City of Kelowna Regular Council Meeting AGENDA

Pages

Monday, April 24, 2023 1:30 pm Council Chamber City Hall, 1435 Water Street

1. Call to Order

I would like to acknowledge that we are gathered today on the traditional, ancestral, unceded territory of the syilx/Okanagan people.

This Meeting is open to the public and all representations to Council form part of the public record. A live audio-video feed is being broadcast and recorded on kelowna.ca.

2.	Confirr	nation of Minutes	4 - 10
	PM Me	eting - April 17, 2023	
3.	Develo	pment Application Reports & Related Bylaws	
	3.1	Benvoulin Road 2809 - OCP22-0010 Z22-0059 - Gurdwara Guru Amardas Darbar Sikh Society	11 - 30
		To NOT amend the Official Community Plan or rezone the subject property that would facilitate future religious assembly use.	
	3.2	Barber Rd 135, Barber Rd 155 and Hwy 33 W 765, TA22-0018 (BL 12514) - ASI BARBER ROAD GP INC, INC NO A0122606	31 - 43
		To amend Zoning Bylaw No. 12375 to allow a site-specific text amendment for the subject properties.	
	3.3	Barber Rd 135, Barber Rd 155 and Hwy 33W 765 - BL 12514 (TA22-0018) - ASI BARBER ROAD GP INC, INC NO A0122606	44 - 45
		To give Bylaw No. 12514 first reading for a site-specific text amendment for the subject properties.	
	3.4	Ethel St 2473 - TA23-0003 (BL 12515) - B.C. Life Builders Rehabilitation Society, Inc.No.S-0037307	46 - 58
		To amend Zoning Bylaw No. 12375 to allow a site-specific text amendment for	

Io amend Zoning Bylaw No. 12375 to allow a site-specific text amendment Boarding or Lodging House within an accessory building.

3.5	Ethel St 2473 - BL 12515 (TA23-0003) - B.C. Life Builders Rehabilitation Society, Inc.No. S-0037307	59 - 60
	To give Bylaw No. 12515 first reading for a site-specific text amendment for the subject property.	
3.6	Richter St 2609-2611 - DP22-0236 - New Opportunities for Women (NOW) Canada Society, Inc.No. S-39119	61 - 116
	To issue a Development Permit for the form and character of a 5-storey building offering a women's shelter and supportive housing services.	
Non-E	Development Reports & Related Bylaws	
4.1	Five Year Financial Plan Bylaw 2023-2027	117 - 216
	To present the 2023 Final Budget Volume submissions, the 2023-2027 Financial Plan and related bylaws to Council for their consideration and approval.	
4.2	BL12502 - Five-year Financial Plan Bylaw 2023	217 - 222
	To give Bylaw No. 12502 first, second and third reading.	
4.3	BL12503 - Tax Structure Bylaw 2023	223 - 223
	To give Bylaw No. 12503 first, second and third reading.	
4.4	BL12504 - Annual Tax Rates Bylaw 2023	224 - 226
	To give Bylaw No. 12504 first, second and third reading.	
4.5	BL12505 - Development Cost Charge Reserve Fund Expenditure Bylaw 2023	227 - 227
	To give Bylaw No. 12505 first, second and third reading.	
4.6	BL12506 - Sale of City-Owned Land Reserves Fund Expenditure Bylaw 2023	228 - 228
	To give Bylaw No. 12506 first, second and third reading.	
4.7	BL12508 - Septic Removal Specific Area Reserve Fund Expenditure Bylaw 2023	229 - 229
	To give Bylaw No. 12508 first, second and third reading.	
4.8	Sterile Insect Release Parcel Tax	230 - 237
	To authorize the 2023 Sterile Insect Release parcel tax levy on specified property tax rolls within the City.	
4.9	BL12516 - Sterile Insect Release Program Bylaw 2023	238 - 250
	To give Bylaw No. 12516 first, second and third reading.	

4.

4.10 Rail Trail Access Permit with OKIB

To execute an agreement where Kelowna constructs, operates, and maintains the Okanagan Rail Trail on a Permit Area authorized by the Okanagan Indian Band on Indian Reserve No. 7.

4.11	Water and Wastewater Servicing Agreement with OKIB IR7	431 - 460
	To execute an agreement where Kelowna provides water and wastewater servicing to Okanagan Indian Band lands on Indian Reserve No. 7.	
Bylaws	for Adoption (Non-Development Related)	
5.1	BL12501 - Amendment No. 1 to the Five Year Financial Plan 2022-2026 Bylaw No. 12338	461 - 462
	To adopt Bylaw No. 12501.	
5.2	BL12513 - Amendment No. 11 to Miscellaneous Fees and Charges Bylaw No. 9381	463 - 463
	To adopt Bylaw No. 12513.	
5.3	BL12512 - Amendment No. 23 to the Subdivision, Development and Servicing Bylaw No. 7900	464 - 465
	To adopt Bylaw No. 12512.	

6. Mayor and Councillor Items

7. Termination

5.

City of Kelowna Regular Council Meeting Minutes

Date: Location: Monday, April 17, 2023 Council Chamber City Hall, 1435 Water Street

Wooldridge

Members Present

Staff Present

City Manager, Doug Gilchrist; Deputy City Clerk, Laura Bentley; Divisional Director, Planning & Development Services, Ryan Smith*; Development Planning Department Manager, Terry Barton*; Financial Planning Manager, Melanie Antunes*; Revenue Supervisor, Patrick Gramiak*; Budget Supervisor, Jennifer Gills*; Acting Controller, Matt Friesen*; Acting Divisional Director, Financial Services, Joel Shaw*; General Manager, Infrastructure, Mac Logan*; Utility Services Manager, Kevin Van Vliet*; Parks & Buildings Planning Manager, Robert Parlane*; Park & Landscape Planner, Stefan Johansson*; Divisional Director, Partnership & Investments, Derek Edstrom*; Real Estate Department Manager, Johannes Saufferer*; Long Range Policy Planning Manager, Robert Miles*; Strategic Transportation Planning Manager, Mariah Van Zerr*; Policy & Planning Department Manager, Danielle Noble-Brandt*; Urban Forestry Supervisor, Tara Bergeson*; Sustainability Coordinator, Tracy Guidi*; Legislative Technician, Natasha Beauchamp

Mayor Tom Dyas, Councillors Ron Cannan*, Maxine DeHart, Charlie Hodge, Gord Lovegrove, Mohini Singh, Luke Stack, Rick Webber and Loyal

Staff participating Remotely

Guests Remotely

Guests

Willowstone Academy Better World Club Students*

Legislative Coordinator (Confidential), Arlene McClelland

Amelia Needoba*, Diamond Head Consulting

(* Denotes partial attendance)

1. Call to Order

Mayor Dyas called the meeting to order at 1:30 p.m.

I would like to acknowledge that we are gathered today on the traditional, ancestral, unceded territory of the syilx/Okanagan people.

This Meeting is open to the public and all representations to Council form part of the public record. A live audio-video feed is being broadcast and recorded on kelowna.ca and a delayed broadcast is shown on Shaw Cable.

2. Confirmation of Minutes

Moved By Councillor Hodge/Seconded By Councillor Lovegrove

THAT the Minutes of the Regular Meetings of April 3, 2023 be confirmed as circulated.

Carried

3. Public in Attendance

3.1 Better World Club, Willowstone Academy (Winners of 2023 Sustainable Development Challenge)

Student Guests:

- Provided a presentation to Council regarding Project Mini Forests that won the 2023 Sustainable Development Challenge.
- Requested the City to partner with land for their second mini forest location that can be as small as a parking space.
- Asked that the City require developers to plant trees and to support the Sustainable Urban Forest Strategy.
- Responded to questions from Council.

Councillor Cannan joined the meeting at 1:32 p.m.

Mayor Dyas:

- Announced a financial contribution of \$5,000 to match the 2023 Sustainable Development Challenge award and requested the group report back to Council on their progress.

The meeting recessed at 1:48 p.m.

The meeting reconvened at 1:54 p.m.

- Development Application Reports & Related Bylaws
 - 4.1 Rezoning Bylaw Supplemental Report to Council

Deputy City Clerk:

- Confirmed no correspondence was received for the rezoning on Polo and Sexsmith Roads.
 - 4.2 Rezoning Bylaw Readings
 - 4.2.1 Polo Rd 2019 BL12510 (Z23-0005) 1383931 B.C. Ltd., Inc. No. BC1383931
 - 4.2.2 Sexsmith Rd 2930 BL12511 (Z22-0019) Reid Industrial Centre Ltd., Inc. No. BC1326474

Moved By Councillor Hodge/Seconded By Councillor Lovegrove

THAT Bylaw No. 12510 and 12511 be read a first, second and third time.

Carried

5. Non-Development Reports & Related Bylaws

5.1 2023 BC Growing Communities Fund Allocation

Staff:

- Displayed a PowerPoint Presentation summarizing the fund receipt and allocation.

Moved By Councillor Wooldridge/Seconded By Councillor Stack

THAT Council receives, for information, the report from the Financial Services Department dated April 17,2023 with respect to the 2023 BC Growing Communities Fund;

AND THAT the 2023 Financial Plan be amended to include the receipt of the \$26,228,000 grant funds, and the contribution of the funds to reserve;

AND FURTHER THAT Council direct staff to return to Council to present a project plan to use the grant funds.

Carried

5.2 2023 Tax Distribution

Staff:

- Displayed a PowerPoint Presentation outlining distribution of taxation demand among property classes that will result in the 2023 tax rate.

Moved By Councillor Webber/Seconded By Councillor Wooldridge

THAT Council approve a Municipal Tax Distribution Policy as outlined in the Report dated April 17, 2023, for the year 2023 that will result in a modification of the 2022 Tax Class Ratios to reflect the uneven market value changes which have been experienced between property classes, as follows:

Property Class	2022 Tax C <u>lass Ratios</u>	2023 Tax <u>Class Ratios</u>
Residential/Rec/NP/SH	1.0000:1	1.0000:1
Utilities	6.0783:1	5.7720:1
Major Industrial	7.5328:1	8.5581:1
Light Industrial/Business/Other	2.5451:1	2.4594:1
Farm Land	0.2052:1	0.2307:1
Farm Improvements	0.4905:1	0.5149:1

AND THAT Council approve development of 2023 tax rates to reflect the 2023 assessment changes in property market values.

Carried

5.3 Amendment No. 1 to Five Year Financial Plan 2022 - 2026 Bylaw

Staff:

- Displayed a PowerPoint Presentation summarizing the transfers and amendments to the 2022-2026 Financial Plan.

Moved By Councillor Cannan/Seconded By Councillor Lovegrove

THAT Council receives, for information, the Report from Financial Services dated April 17, 2023 with respect to amendments to the Five Year Financial Plan 2022-2026 Bylaw;

AND THAT Bylaw No. 12501 being Amendment No. 1 to the Five Year Financial Plan 2022-2026 Bylaw No. 12338 be advanced for reading consideration.

Carried

5.4 BL12501 - Amendment No. 1 to the Five Year Financial Plan 2022-2026 Bylaw No. 12338

Moved By Councillor Stack/Seconded By Councillor Wooldridge

THAT Bylaw No.12501 be read a first, second and third time.

Carried

5.5 Miscellaneous Fees and Charges Bylaw No. 9381 – Amendment

Staff:

Displayed a PowerPoint Presentation outlining the proposed amendments and responded to questions from Council.

Moved By Councillor Lovegrove/Seconded By Councillor DeHart

THAT Council receive for information the report of the Miscellaneous Fees and Charges dated April 17, 2023;

AND THAT Bylaw No. 12513 being Amendment No. 11 to the Miscellaneous Fees and Charges Bylaw 9381 be advanced for reading consideration.

Carried

5.6 BL12513 - Amendment No. 11 to Miscellaneous Fees and Charges Bylaw No. 9381

Moved By Councillor Wooldridge/Seconded By Councillor Stack

THAT Bylaw No. 12513 be read a first, second and third time.

Carried

5.7 Approved Products List

Staff:

- Displayed a PowerPoint Presentation summarizing the changes to the Approved Products List and responded to questions from Council.

Moved By Councillor Cannan/Seconded By Councillor Lovegrove

THAT Council receives, for information, the report from the Financial Services Division, dated April 17, 2023, regarding Council Policy 266;

AND THAT Council Policy No. 266, being Subdivision, Development & Servicing – Approved Products List, be rescinded;

AND THAT Bylaw No. 12512, being Amendment No. 23 to Subdivision Development and Servicing Bylaw No. 7900, be forwarded for reading consideration;

AND FURTHER THAT Council Policy No. 265, being Engineering Drawing Submission Requirements, be revised as outlined in the Report from the Financial Services Division dated April 17, 2023.

Carried

5.8 BL12512 - Amendment No. 23 to the Subdivision, Development and Servicing Bylaw No. 7900

Moved By Councillor Stack/Seconded By Councillor Wooldridge

THAT Bylaw No. 12512 be read a first, second and third time.

Carried

5.9 Water and Wastewater Service Agreements with District of Lake Country

Staff:

 Displayed a PowerPoint Presentation outlining the Water and Sewer Agreements with Lake Country and responded to questions from Council.

Moved By Councillor Cannan/Seconded By Councillor Stack

THAT Council receives for information the report from the Infrastructure General Manager dated April 17, 2023, with respect to Water and Sewer Service Agreements between Kelowna and the District of Lake Country;

AND THAT the Mayor and City Clerk be authorized to execute the Bulk Water Supply Agreement and the Sewer Services Agreement on behalf of the City of Kelowna;

AND FURTHER THAT the 2023 Financial Plan be amended to include \$1.3 million for the Beaver Lake Service Area Sewer Extension project funded from the Wastewater Utility.

Carried

5.10 Pickleball and Tennis Long Term Parks Planning

Staff:

- Displayed a PowerPoint Presentation outlining the long-term Parks Planning Initiative concerning outdoor pickleball and tennis court provision and responded to questions from Council.

Moved By Councillor Lovegrove/Seconded By Councillor Hodge

THAT Council receives for information, the report from Parks & Buildings Planning dated April 17, 2023, with respect to future strategy for outdoor pickleball and tennis courts within the city's parks system;

AND THAT Council directs staff to proceed with the design of both Glenmore Recreation Park and DeHart Park in accordance with this strategy.

Carried

5.11 Non-Market Lease of 1360 Bertram Street to Pathways Abilities Society

Staff:

- Displayed a PowerPoint Presentation summarizing the non-market lease agreement and responded to questions from Council.

Moved By Councillor Hodge/Seconded By Councillor Wooldridge

THAT Council receives, for information, the report from the Real Estate department dated April 17, 2023, with respect to a 60-year non-market lease agreement between the City of Kelowna and the Pathways Abilities Society;

AND THAT Council approves a 60-year non-market lease of the city-owned property at 1360 Bertram Street to the Pathways Abilities Society, as per the general terms and conditions of the agreement attached as Schedule A to the report from the Real Estate department dated April 17, 2023;

AND FURTHER THAT the Mayor and City Clerk be authorized to execute the Lease Agreement and all documents necessary to complete this transaction.

Carried

The meeting recessed at 3:05 p.m.

The meeting reconvened at 3:14 p.m.

5.12 2022 Progress Report - OCP and Transportation Master Plan

Staff:

- Displayed a PowerPoint Presentation outlining the progress report for the 2040 Official Community Plan and Transportation Master Plan and responded to questions from Council.

Moved By Councillor DeHart/Seconded By Councillor Wooldridge

THAT Council receives, for information, the report from Policy & Planning and Integrated Transportation, dated April 17, 2023, with regard to the 2022 Progress Report for the Official Community Plan and Transportation Master Plan and responded to questions from Council.

Carried

5.13 Sustainable Urban Forest Strategy - Goals and Strategies

Staff:

- Acknowledged Amelia Needoba, Diamond Head Consulting that joined the meeting remotely.
- Displayed a PowerPoint Presentation providing an update on the Sustainable Urban Forest
- Strategy progress and responded to questions from Council.

Moved By Councillor Hodge/Seconded By Councillor Lovegrove

THAT Council receives, for information, the report from the Parks Services and Policy & Planning Departments dated April 17, 2023, with respect to the Sustainable Urban Forest Strategy goals and strategies.

Carried

6. Mayor and Councillor Items

Councillor Stack:

- There has been a change of date to the Kelowna Springs Public Hearing to Tuesday, June 20, 2023 with correspondence being accepted from May 23, 2023 onward.

Councillor Wooldridge:

- Spoke to their participation in the Crime Stoppers Fundraiser.
- Spoke to their attendance at the Vaisakhi celebrations.
- Spoke to their attendance at the Central Okanagan Hospice Swinging with the Stars Fundraiser.

Councillor DeHart:

- Spoke to their attendance at the Chamber of Commerce AGM , luncheon and Board meeting.
- Spoke to their attendance at the UDI luncheon.
- Reminder that the 2023 Civic Awards in on Thursday, April 20, 2023 at the Laurel Packing House.

7

Councillor Cannan:

- Spoke to previous Wilden and Clifton Road transit Notice of Motion.
- Advised that staff confirmed that transit is not currently planned for the Wilden area; the focus is on building frequent transit service connecting town centres and addressing areas of higher demand.
- Provided comment on potential digital on-demand service.
- Requested RCMP traffic monitoring on Upper Canyon Drive.
- Spoke to recent Provincial Housing announcement regarding up to four units on single family lots.
- Spoke to their participation in the KLO Residents Association bike tour.

City Manager:

 Provided comment on the Provincial Housing announcement, infrastructure needs and transit expansion.

Councillor Singh:

- Spoke to their attendance at the Vaisakhi celebrations and noted the parade will be held on April 29, 2023.

Councillor Hodge:

- Provided an update on their Notice of Motion to send a letter to the Province regarding a derelict houseboat on ferry docks on the lake.

Councillor Singh:

- Will be speaking about Kelowna at the Transatlantic Community Policy Lab at York University.

Councillor Lovegrove:

- Provided an update on their Notice of Motion regarding declaring a climate crisis.
- Spoke to their participation in the KLO Residents Association bike tour.
- Spoke to their upcoming attendance of the Finning Tractor opening on behalf of Mayor Dyas.

Mayor Dyas:

- Spoke to the Crime and Safety Task Force Terms of Reference to come forward in a Council package.

7. Termination

This meeting was declared terminated at 4:36 p.m.

tv Citv Clerk

Mayor Dyas

/acm

April 24, 2023			
Council			
City Manager			
Development P	Planning		
OCP22-0010/Z	22-0059	Owner:	Gurdwara Guru Amardas Darbar Sikh Society Inc. No Soo40725
2809 Benvoulir	Road	Applicant:	Urban Options Planning Corp.
Official Commu	unity Plan Amendment a	and Rezoning A	pplication
esignation:	R-AGR - Rural - Agricult	ture and Resou	rce
Designation:	EDINST – Education / Ir	nstitutional	
	A2 – Agriculture / Rural Residential		
	P2 – Education and Minor Institutional		
	April 24, 2023 Council City Manager Development F OCP22-0010/Z: 2809 Benvoulin Official Commu esignation: Designation:	April 24, 2023 Council City Manager Development Planning OCP22-0010/Z22-0059 2809 Benvoulin Road Official Community Plan Amendment a esignation: R-AGR - Rural - Agricult Designation: EDINST – Education / In A2 – Agriculture / Rural P2 – Education and Mir	April 24, 2023 Council City Manager Development Planning OCP22-0010/Z22-0059 Owner: 2809 Benvoulin Road Applicant: Official Community Plan Amendment and Rezoning A esignation: R-AGR - Rural - Agriculture and Resou Designation: EDINST – Education / Institutional A2 – Agriculture / Rural Residential P2 – Education and Minor Institutional

1.0 Recommendation

THAT Official Community Plan Map Amendment Application No. OCP22-0010 to amend Map 4.1 in the Kelowna 2040 – Official Community Plan Bylaw No.12300 by changing the Future Land Use designation of Lot 1 District Lot 130 ODYD Plan 8064 located at 2809 Benvoulin Road, Kelowna, BC from the R-AGR - Rural - Agriculture and Resource designation to the EDINST – Education / Institutional designation, <u>NOT</u> be considered by Council.

AND THAT Rezoning Application No. Z22-0059 to amend the City of Kelowna Zoning Bylaw No. 12375 by changing the zoning classification of Lot 1 District Lot 130 ODYD Plan 8064 located at 2809 Benvoulin Road, Kelowna, BC from the A2 – Agriculture / Rural Residential zone to the P2 – Education and Minor Institutional zone, <u>NOT</u> be considered by Council.

2.0 Purpose

To review a Staff recommendation to NOT amend the Official Community Plan or rezone the subject property that would facilitate future religious assembly use.

3.0 Development Planning

The Sikh community in Kelowna has gradually outgrown their place of assembly and worship at 220 Davie Road in Rutland and wish to construct a new Gurdwara for their growing community. A search for a suitable location has taken place over the past few years and finding a new location for a larger congregation has proved challenging.

The subject property is located in the Benvoulin area and is considered an important agricultural corridor for both existing agricultural activity and heritage. Official Community Plan (OCP) policies specifically discourage public or private institutional use including places of religious assembly on agricultural lands. Although not within the Agricultural Land Reserve (ALR), the property is designated and zoned for agriculture and directly borders ALR land. Any urban development is discouraged in areas outside of the Permanent Growth Boundary to minimize development and speculative pressure on agricultural lands. Based on these overall OCP policies the Planning Department is recommending non-support for the proposed OCP and Rezoning amendments to facilitate future religious assembly on the subject property.

Staff have reviewed this application, and it may move forward without affecting either the City's Financial Plan or Waste Management Plan.

4.0 Proposal

4.1 <u>Background</u>

The subject property is designated R-AGR Rural - Agriculture and Resource, is zoned A₂ – Agriculture / Rural Residential, is outside of the PGB, but is not within the Agricultural Land Reserve (ALR). However, the property is bordering ALR lands to the north and east. There is currently a single-family dwelling on the property and its current use is rural residential.

4.2 Project Description

The building for the proposed religious assembly and Gurdwara is approximately 2,335 m², two and half storeys tall and located in centre of the property. It includes areas for worship, classrooms, office space and washrooms. Primary access would be from Boyd Road with drive aisle circulation around the proposed building. The remainder of the property is used for parking stalls, landscaping, agricultural buffer and vegetable and fruit gardens.

The agricultural buffer is proposed at 8.0 m wide and stretches the length of the north and east property boundaries, separating it from the active agriculture and ALR. Approximately 206 m² of area along the northeast property lines is proposed to be used for vegetable garden to provide a link to agriculture and for food donation to the community. In partnership with The Bridge – Youth and Family Services, the Sikh society will donate vegetables to their organization.

If Council chose to proceed with the OCP Amendment and Rezoning proposal, Council consideration of a Form and Character Development Permit would be required along with a staff issued Farm Protection Development Permit.

Site Context

The subject property is located on the Benvoulin Road corridor which has frontage on Benvoulin Road and access from Boyd Road to the south. It is located north of the KLO/ Benvoulin Road intersection and is approximately 2.25 acres in size. Specifically, adjacent land uses are as follows:

Orientation	Zoning	Land Use
North	A1 - Agriculture	Agriculture
East	A1 - Agriculture	Agriculture
South	RU1 — Large Lot Housing	Residential
West	A1 - Agriculture	Benvoulin Road / Agriculture

Subject Property Map: 2809 Benvoulin Road

5.0 Current Development Policies

5.1 <u>Kelowna Official Community Plan (OCP)</u>

The Big Picture: 10 Pillars to Realize our Vision

1. Protect Agriculture - Agriculture has played a crucial role in Kelowna's economy for generations and is a big part of Kelowna's identity. Local food production is also becoming even more important in the face of a changing climate. As such, protecting agricultural lands is key goal of Imagine Kelowna. The Official Community Plan supports this critical component of our economy, identity and food security by limiting urban growth into agricultural lands and supporting their viability.

Objective 8.1. Protect and preserve agricultural land and its capability.			
Policy 8.1.1.	Retain the agricultural land base by supporting the ALR and by		
Protect	protecting agricultural lands from development. Ensure that the primary use		
Agricultural Land.	of agricultural land is agriculture, regardless of parcel size.		
	The property is 2.25 ac is size and could be utilized for agricultural purposes. It is not		
located within the Agricultural Land Reserve, however the property			
	considered agricultural and is directly adjacent to ALR lands.		
Policy 8.1.2.	Protect and support the continued designation and use of agricultural land for		
Agricultural Land	agricultural purposes regardless of soil types and capabilities. Locate agricultural		
Designation.	structures to maximize the agricultural potential of prime soil resources.		
	The property is designated for agricultural use in the OCP.		
Policy 8.1.4. Urban	Direct urban uses to lands within the Permanent Growth Boundary, to minimize		
Uses.	development and speculative pressure on agricultural lands.		

	The property is located outside of the PGB.		
Policy 8.4.1.	Do not support urban uses on lands outside the Permanent Growth		
Intensification of	Boundary except for as permitted by the 2040 OCP Future Land Use Designations		
Rural Lands. in place as of initial adoption of the 2040 OCP Bylaw.			
	The institutional designation is considered an urban use.		
Policy 8.4.5. Public	Discourage the use of agricultural lands for public or institutional uses such as		
Uses on	schools, parks and churches except as identified in the 2040 OCP.		
Agricultural Lands.	ultural Lands. The proposal is for a private institutional use.		

6.0 Application Chronology

Date of Application Accepted:	September 23, 2022
Date Public Consultation Completed:	October 29, 2022

7.0 Alternate Recommendation

THAT Official Community Plan Map Amendment Application No. OCP22-0010 to amend Map 3.1 in the Kelowna 2040 – Official Community Plan Bylaw No. 12300 by changing the Future Land Use designation of Lot 1 District Lot 130 ODYD Plan 8064 located at 2809 Benvoulin Road, Kelowna, BC from the R-AGR - Rural - Agriculture and Resource designation to the EDINST – Education / Institutional designation, be considered by Council;

THAT Rezoning Application No. Z22-0059 to amend the City of Kelowna Zoning Bylaw No. 12375 by changing the zoning classification of Lot 1 District Lot 130 ODYD Plan 8064 located at 2809 Benvoulin Road, Kelowna, BC from the A2 – Agriculture / Rural Residential zone to the P2 – Education and Minor Institutional zone, be considered by Council;

AND THAT the Official Community Plan Amendment and Rezoning Bylaw be forwarded to a Public Hearing for further consideration;

AND THAT final adoption of the Rezoning Bylaw be considered subsequent to the outstanding conditions of approval as set out in Schedule "A" attached to the Report from the Development Planning Department dated October 11, 2022; and

AND FURTHER THAT final adoption of the Rezoning Bylaw be considered in conjunction with Council's consideration of a Form and Character Development.

Report prepared by:	Wesley Miles, Planner Specialist
Reviewed by:	Dean Strachan, Community Planning & Development Manager
Approved for Inclusion:	Terry Barton, Development Planning Department Manager
Approved for Inclusion:	Ryan Smith, Divisional Director, Planning & Development Services

Attachments:

Attachment A: Rationale Letter

July 12, 2022

City of Kelowna Attn. Wesley Miles **Urban Planning Department** 1435 Water Street Kelowna, BC

RE: 2809 Benvoulin Road, Gurdwara Guru Amardas Sikh Society Proposal File no. Z21-0095 and OCP21-0023

Dear Wesley,

We appreciate that the various members of the Planning Department have been working with our group to find a suitable location for a new Gurdwara. The existing location at 220 Davie Road has become too small to serve our Sikh community. Through our mutual investigation, it has been determined that very few locations exist for a place of worship, leading to the exhaustion of all current options. Unfortunately, the original submission for the property at 2090 Byrns Road is no longer an option. The Society has sourced a different site at 2809 Benvoulin Road for the purpose of building a new Gurdwara.

The purpose for this application is to obtain the appropriate approvals to construct a Gurdwara. Specifically, we are seeking to rezone the subject property from A1-Agriculture (outside of the ALR) to P2-Educational and Minor Institutional zone with an associated Official Community Plan amendment from R-AGR Rural Agricultural Resource to EDINST- Education/Institutional. Institutional uses are found in the immediate vicinity including the Heritage Christian School and the Fortis Utility site.

This rationale will outline how the site is ideal for the development of a

Gurdwara through social linkages of the Sikh community to agriculture and overall community benefits.

Social Linkage to Agricultural Land

People from the Punjab region of India began immigrating to British Columbia in the 1890's. The majority settled in rural areas (including the Okanagan), working in industries such as forestry and agriculture. Sikhism was founded in northern India (Punjab region), where, for hundreds of years, Sikhs have been integral to farming operations. They are proud farmers and constantly seek opportunities to expand farming. Many local farms are now owned by people in the Sikh faith who are willing to do the difficult and gruelling work, as well as take the risks associated with this occupation.

The Sikh community in Kelowna farms over 2,000+ acres of land. Financial challenges and pressures often arise in the farming industry. As an outlet, it's important for the community to have a location to **practice their faith** and connect with the community.

History of the Site

The subdivision plan for the property addressed 2809 Benvoulin Road was registered in April 1957, as a 2.25ac (0.91ha) lot, at a time before this area was part of the City of Kelowna. In observing the air photos over the last 20 years, it seems that the agricultural activity on this property has been minor in nature. The property to the south was recently subdivided through an existing Land Use Contract and the land to the east and north are in the ALR. This property is not in the ALR.

History of the Gurdwara Guru Amardas Darbar Sikh Society

Gurdwara Guru Amardas Sikh Society commenced in 1999 and has served the community for the past 20 years with weekly congregations and special events such as weddings, festivals, and religious celebrations. It has become a central hub to gather for worship and fostered a sense of belonging for the Okanagan Sikh community.

Kelowna's population has been growing and is expected to grow for the next decade. It is one of the fastest growing cities in British Columbia with new residents of various ethnicities, including Sikhs, moving to the region from the other parts of British Columbia, Alberta, and Ontario. An increasing number of the Sikh population, through immigration and existing growing families, is making Kelowna their home. With recent growth of the community, the Society is unable to meet with societal demands, and the Sikh community has outgrown its current location.

Development of a larger Gurdwara and providing space that allows communities to flourish will benefit locals as they will have the opportunity to hold weddings in their hometown rather than holding these events in other cities/communities. The current Gurdwara on Davie Road is no longer able to hold large events, including weekly congregations, and general space shortages have become a barrier for regularly holding congregations and events. At these events including the weekly congregations, limited parking has resulted in the congregation parking their vehicles away from the Gurdwara. Parking shortages present a safety and security concern to the congregation and have become an inconvenience to nearby residents. The indoor shared spaces, dining halls, kitchen, and public washrooms are unable to accommodate the size of the community on a usual congregation, resulting in congestion or overcrowding. In addition, visiting preachers often attend special events and require accommodation which is not available.

Proposal

A 2,335m² the Gurdwara is proposed for the approximate centre of the property. The proposed site plan features the main access to the site at the end of Boyd Road. There will be a secondary vehicle and pedestrian access directly from Benvoulin Road that will be gated. The secondary entrance will allow for pedestrian/bicycle access through a walkway in the centre and one on the south side of the site.

The proposed building will be 2.5 storeys in height and will cover approximately 8.3% of the site. The site has been carefully developed to ensure that the activities in the Gurdwara will not impact the residential neighbours directly using decorative shrubs, perennials and ornamental grasses and several large deciduous trees. Appropriate parking and creation of ample green spaces are provided with gardens leading to the Gurdwara including seating areas, a rivered water feature and a small plaza at the flag pole. The building will house the Langar Hall (space to receive rest and nourishment), a large Darbar Hall (main worship hall), a smaller Darbar Hall, a large kitchen, youth education rooms, Gurdwara offices, visiting preacher accommodations and all associated utility, washrooms and other needs. The building will be finished in traditional colours and modern design style to match associated Gurdwaras worldwide.

The location is suitable as it is easily accessed using multiple modes of transportation. Benvoulin Road in this location has bike lanes on each side and is also a bus route. The closest transit stop is at the corner of Benvoulin and KLO road approximately 500m to the south. Sidewalks are available from the bus stop to the corner of Fisher Road. Bicycle pathways link to Orchard Park mall on Benvoulin adjacent to the project. Alternatively, a bicycle pathway is located on KLO where worshipers could access through the Fisher Road neighbourhood. Okanagan College (2.0 km west) and the Hospital (3.8km west) are in close proximity.

The proposed redevelopment will provide a direct linkage and connection to agriculture. First and foremost, almost 600m² (6458 square feet) of the land would be utilized for a **vegetable garden and fruit trees**. The land would be cultivated and would generate produce. On the west end of the property, 206 m² (2,217 square feet) of land would be used for a vegetable garden. Various types of vegetables would be produced in raised beds (6 feet by 12 feet). The Sikh society will partner with "Bridges to New Life" and donate vegetables to their organization. Due to the specific requirements for the agricultural buffer on the north and west property lines, no fruit trees are planned.

Community Benefits

The Sikh Society, like other faith organizations, promotes prosocial attitudes and behaviours through education and upbringing from senior community members. Children and youth who attend a place of worship put a distinctively high value on a sense of belonging, friendliness, and kindness.

Through avenues such as language classes, summer camps, and cultural activities, children can learn about their religion and history in a fun and engaging way. Engagement promotes prosocial behaviours and values, and principles learned at an early age are often carried later into life and translated to altruistic and humanitarian acts of forgiveness, generosity, and concern for others.

The Sikh society understands and appreciates the City's desire to have the Benvoulin corridor and this parcel connected with farming. In addition to the Gurdwara, the Society proposes to utilize the parcel for agricultural purposes and commits to annually donate 13,000 pounds of fruit to the community. Notices will be provided through social media and local newspapers with the date and time. This fruit will be provided at the subject property 2809 Benvoulin Road. The society hopes to partner with local Kelowna Food Bank and Interior Health branches, where efforts can be targeted to those families that are low income and may not have access to nutritional food.

The Bridge Youth and Family services will be using some of the garden and growing spaces for a horticultural therapy component of their programming (letter attached). It will allow the participants of their program the opportunity to learn about plants and lifecycles and the cycles that are present in their own recovery.

Finally, an outdoor washroom with a shower will be provided for anyone in Kelowna who wants to access a free warm shower, no questions asked. At times there are members of our community who face hardship, we have seen articles in local newspapers of individuals living out of their vehicles. While they have access to toilet, a hot shower they do not. This connection fits well with the Gurdwara, as the third Guru (Guru Amardas), would collect water in the early morning and provide that for the second Guru (Guru Angad Dev Ji) for twenty-three years. Security measures will be in place to ensure appropriate use of the washroom.

The development of the new Gurdwara will enable the society to better serve the members and offer space for the community to grow resulting in a prosperous society. Moreover, this expansion will allow our local Sikh population to flourish and be a social and economic benefit to the city and surrounding areas. By integrating traditions out of the Sikh faith and welcoming the surrounding community to participate and benefit from the uses at the site, the Sikh society will be a good neighbour.

We look forward to bringing this project to Council for their consideration and welcome any feedback. Please contact, Birte Decloux, Urban Options planning directly at 250.575.6707.

Regards,

Birte Decloux, RPP MCIP Urban Options Planning Corp. on behalf of the Guru Amardas Sikh Society

OCP22-0010/Z22-0059 2809 Benvoulin Road

Official Community Plan and Rezoning Amendment

Proposal

- To change the Future Land Use designation of the subject property from R-AGR - Rural - Agriculture and Resource designation to the EDINST – Education / Institutional designation
- To rezone the subject property from the A2 Agriculture / Rural Residential zone to the P2 – Educational and Minor Institutional zone

Development Process

Context Map

OCP Future Land Use / PGB

Agricultural Land Reserve

Subject Property Map

General project details

- 2,335 m2, 2.5 storey building
- Parking and landscaping around the perimeter
- Primary access from Boyd Road
- Vegetated agricultural buffer would be required on the north and east property boundaries
- Form and Character Development Permit is required to be approved by Council if the proposal were to proceed.

Development Policy

The Big Picture: 10 Pillars to Realize our Vision

1. Protect Agriculture - Agriculture has played a crucial role in Kelowna's economy for generations and is a big part of Kelowna's identity. Local food production is also becoming even more important in the face of a changing climate. As such, protecting agricultural lands is key goal of Imagine Kelowna. The Official Community Plan supports this critical component of our economy, identity and food security by limiting urban growth into agricultural lands and supporting their viability.

Objective 8.1. Protect and processes agricultural land and its canability				
o jettive of a reference and preserve agricolorial and its capability.				
Policy 8.1.1. Retain the agricultural land base by supporting the				
Protect protecting agricultural lands from development. Ensure that the private				
Agricultural Land.	of agricultural land is agriculture, regardless of parcel size.			
	The property is 2.25 ac is size and could be utilized for agricultural purposes. It is not			
	located the Agricultural Land Reserve, however the property is still considered			
	agricultural and is directly adjacent to ALR lands.			
Policy 8.1.2.	Protect and support the continued designation and use of agricultural land for			
Agricultural Land	agricultural purposes regardless of soil types and capabilities. Locate agricultural			
Designation. structures to maximize the agricultural potential of prime soil resou				
	However not the Agricultural Land Reserve, the property is still considered and			
designated for agricultural use.				
Policy 8.1.4.	Direct urban uses to lands within the Permanent Growth Boundary, to minimize			
Urban Uses.	development and speculative pressure on agricultural lands.			
	The property is located outside of the PGB.			
Policy 8.4.1.	y 8.4.1. Do not support urban uses on lands outside the Permanent Growth			
Intensification of Boundary except for as permitted by the 2040 OCP Futur				
Rural Lands.	Designations in place as of initial adoption of the 2040 OCP Bylaw.			
The institutional designation is considered an urban use.				
Policy 8.4.5.	Discourage the use of agricultural lands for public or institutional uses such as			
Public Uses on	schools, parks and churches except as identified in the 2040 OCP.			
Agricultural	The proposal is for a private religious assembly/institutional use.			
Lands.				

Public Notification Policy #367 Kelowna

- Describe how the applicant has completed public notification to comply with the Council Policy
 - Public notification and open houses were completed in October 2022

Staff Recommendation

- Staff are recommending non-support of the proposed Official Community Plan and rezoning amendment
 - Does not meet overall policies of the OCP for rural or agricultural areas
 - Located outside the PGB
 - Public or private Institutional uses including churches or places of religious assembly are not supported on rural or agricultural land

Conclusion of Staff Remarks

1.0 Recommendation

THAT Zoning Bylaw Text Amendment Application No. TA22-0018 to amend City of Kelowna Zoning Bylaw No. 12375 as outlined in Schedule "A" attached to the Report from the Development Planning Department dated April 24, 2023 for LOT 1 SECTION 22 TOWNSHIP 26 OSOYOOS DIVISION YALE DISTRICT PLAN 17229 EXCEPT PLAN 39372 located at 765 Hwy 33 W, LOT 2 SECTION 22 TOWNSHIP 26 OSOYOOS DIVISION YALE DISTRICT PLAN 17229 located at 135 Barber Rd and LOT 3 SECTION 22 TOWNSHIP 26 OSOYOOS DIVISION YALE DISTRICT PLAN 17229 located at 155 Barber Rd be considered by Council;

AND THAT the Zoning Bylaw Text Amending Bylaw be forwarded to a Public Hearing for further consideration;

AND THAT final adoption of the Zoning Bylaw Text Amending Bylaw be considered subsequent to the approval of the Ministry of Transportation and Infrastructure;

AND FURTHER THAT final adoption of the Rezoning Bylaw be considered in conjunction with Council's consideration of a Development Permit and Development Variance Permit for the subject property.

2.0 Purpose

To amend the Zoning Bylaw with a Site-Specific Text Amendment to permit ground-floor commercial uses to occupy a minimum of 0% of the Hwy 33 W street frontage.

3.0 Development Planning

Staff recommend support for this Site-Specific Text Amendment application. Map 4.8 in the 2040 Official Community Plan (OCP) identifies the envisioned street character of roads within the Rutland Urban Centre. The portion of Hwy 33 W, fronting these properties, is identified as a Retail Street in the OCP. The street character of Hwy 33 W changes to Mixed-Residential Street to the west of Barber Rd, and Barber Rd is identified as a Residential Street. Given the Residential Street designation for Barber Rd, Staff feel the request to not include any commercial uses for this proposed development is reasonable. There are other locations within the Rutland Urban Centre that are appropriate for commercial uses, and as this proposed development is on the edge of the Retail Street Character Map, Planning feels this request would not deteriorate from establishing commercial in the heart of the Rutland Urban Centre.

Zoning Bylaw No. 12375 (Section 14.11) requires a minimum of 90% of the street frontage to be ground-floor commercial. As the request for the proposal to not include any commercial use pertains to the removal of a land-use requirement, this request cannot be handled as a variance and needs to be processed as a site-specific text amendment, in accordance with Local Government Act S. 498(2)(a).

4.0 Site Context & Background

4.1 <u>Site Context</u>

Orientation	Zoning	Land Use
North	P1 – Major Institutional P2 – Education and Minor Institutional UC4dt-fg – Rutland Urban Centre (Drive Through and Fuelling and Gas Stations)	Apartment Housing Health Services Gas Bar, Food Primary with Drive Through
East	UC4dt-rcs - Rutland Urban Centre (Drive Through and Retail Cannabis Sales)	Retail, Retail Cannabis Sales
South	RU1 – Large Lot Housing	Single Detached Housing
West	UC4 – Rutland Urban Centre	Apartment Housing Single Detached Housing

Subject Property Map: 135 Barber Rd, 155 Barber Rd and 765 Hwy 33 W

4.2 <u>Background</u>

The development proposal is for the three lots on the northeast corner of Barber Rd at Hwy 33 W, which front on to Hwy 33 W. They currently contain single detached housing.

5.0 Technical Comments

5.1 <u>Development Engineering Department</u>

Development Engineering Requirements are associated with the related Development Permit (DP22-0225)

6.0 Application Chronology

Date of Application Accepted:November 24, 2022Date Public Consultation Completed:February 18, 2023

Report prepared by:	Kimberly Brunet, Planner II
Reviewed by:	Jocelyn Black, Urban Planning Manager
Reviewed by:	Terry Barton, Development Planning Department Manager
Approved for Inclusion:	Ryan Smith, Divisional Director, Planning & Development Services

Attachments:

Schedule A: Site-Specific Text Amendment Table

Schedule A – Proposed Text Amendments

No.	Section	Current Wording	Proposed Wording	Reason for Change		
11.	Section 14.15 N Site Specific Regulations	N/A	Section 14.15 Site Specific Regulations Uses and regulations apply on a site-specific basis as follows:			To not require any ground- floor
			Legal DescriptionLOT 1 SECTION 22 TOWNSHIP 26OSOYOOS DIVISION YALE DISTRICTPLAN 17229EXCEPT PLAN 39372LOT 2 SECTION 22 TOWNSHIP 26OSOYOOS DIVISION YALE DISTRICTPLAN 17229LOT 3 SECTION 22 TOWNSHIP 26OSOYOOS DIVISION YALEDISTRICT PLAN 17229	Civic Address 765 Hwy 33 W 135 Barber Rd 155 Barber Rd	RegulationTo permit:• ground- floor commercial principal uses to occupy 0% of the Hwy 33 W street frontage	commercial uses on the Hwy 33 W frontage

TA22-0018 135 Barber Rd, 155 Barber Rd and 765 Hwy 33 W

Site-Specific Text Amendment Application

Purpose

To amend the Zoning Bylaw by permitting groundfloor commercial uses to occupy a minimum of o% of the Hwy 33 W street frontage.

Development Process

Context Map

OCP Future Land Use

Subject Property Map

Site-Specific Text Amendment Kelowna

- To permit ground-floor commercial uses to occupy a minimum of o% of the Hwy 33 W street frontage
 - Required to be processed as a text amendment, in accordance with LGA S. 498(2)(a)

Staff Recommendation

Staff recommend support for the proposed sitespecific text amendment application.

- Properties are located on the western edge of the OCP Retail Street Character
- Barber Rd is identified as a Residential Street
- Request would not deteriorate from establishing commercial in the Rutland Urban Centre

CITY OF KELOWNA

BYLAW NO. 12514 TA22-0018 135, 155 Barber Road & 765 HWY 33 W

A bylaw to amend the "City of Kelowna Zoning Bylaw No. 12375".

"

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

- THAT City of Kelowna Zoning Bylaw No. 12375, Section 14 Core Area and Other Zones, Section 14.15 – Site Specific Regulations be amended by adding in its appropriate location the following:
 - Section 14.15 Site Specific Regulations Uses and Regulations apply on a site-specific basis as follows: Legal Description **Civic Address** Regulation LOT 1 SECTION 22 **TOWNSHIP 26 OSOYOOS DIVISION** 765 HWY 33 W YALE DISTRICT PLAN 17229 EXCEPT PLAN 39372 LOT 2 SECTION 22 To permit ground floor commercial TOWNSHIP 26 135 Barber Rd principal uses to occupy o% of the Hwy 33 11. **OSOYOOS DIVISION** W street frontage YALE DISTRICT PLAN 17229 LOT 3 SECTION 22 TOWNSHIP 26 155 Barber Rd **OSOYOOS DIVISION** YALE DISTRICT PLAN 17229 w
- 2. This bylaw shall come into full force and effect and is binding on all persons as and from the date of adoption.

Read a first time by the Municipal Council

Considered at a Public Hearing on this

Read a second and third time by the Municipal Council this

Approved under the Transportation Act this

(Approving Officer – Ministry of Transportation)

Adopted by the Municipal Council of the City of Kelowna this

Mayor

City Clerk

REPORT	ТО СО	UNCIL		City of Kelowna
Date:	April 24, 2023			Relowing
То:	Council			
From:	City Manager			
Department:	Development	Planning		
Application:	TA23-0003		Owner:	B.C. Life Builders Rehabilitation Society, Inc.No.S-0037307
Address:	2473 Ethel St		Applicant:	Tom Smithwick
Subject:	Text Amendr	nent		
Existing OCP D	Designation:	C-NHD - Core Area N	eighbourhood	
Existing Zone:		RU4b – Duplex Housi	ng with Boardir	ng or Lodging House

1.0 Recommendation

THAT Zoning Bylaw Text Amendment Application No. TA23-0003 to amend City of Kelowna Zoning Bylaw No. 12375 as outlined in Schedule "A" attached to the Report from the Development Planning Department dated April 24, 2023 for Lot B District Lot 136 ODYD Plan 30919 located at 2473 Ethel Street be considered by Council;

AND THAT the Zoning Bylaw Text Amending Bylaw be forwarded to a Public Hearing for further consideration.

2.0 Purpose

To amend the Zoning Bylaw by adding a site-specific text amendment to allow Boarding or Lodging House within an accessory building, a reduction in minimum parking space requirements, and a maximum of 14 residents on the subject property.

3.0 Development Planning

Staff are supportive of the site-specific text amendment. The site is currently operating as a Boarding House with 11 bedrooms within the principal dwelling unit, 10 for residents and one for an employee. The accessory building will contain an additional four bedrooms. All residents share a communal kitchen within the principal dwelling unit.

The non-profit organization operating the site does not permit residents to have vehicles on site. Staff members have vehicles on-site and work with residents to attend appointments and basic needs.

Additionally, residents use public transport or cycling, therefore, a reduction in required parking from 10 stalls to 2 stalls is appropriate for this site.

4.0 Proposal

4.1 <u>Background</u>

A Building Permit was issued in November 2010 to construct the accessory building on the subject property (BP41409). Currently the Boarding House operates in the Single Detached Housing building only.

4.2 <u>Project Description</u>

The proposed site-specific text amendment would allow the use of Boarding or Lodging to operate within an accessory structure. In the RU4b zone the existing accessory building on site has been used in the past for garage and workshop space. A building permit would be required for the change of use to create conditioned space.

4.2 <u>Site Context</u>

The subject property is located on Ethel Street between Morrison Avenue and Grenfell Avenue. The property fronts onto the Ethel Street multi-use corridor.

Specifically, adjacent land uses are as follows:

Orientation	Zoning	Land Use
North	RU1 – Large Lot Housing	Single Detached Housing
East	RU1 – Large Lot Housing	Single Detached Housing
South	RU4 – Duplex Housing	Duplex Housing
West	MF1 – Infill Housing	Duplex Housing

Subject Property Map: 2473 Ethel Street

5.0 Current Development Policies

5.1 Kelowna Official Community Plan (OCP)

Objectiv	e 5.11 Incre	ease the diversity of housing forms and tenure to create an inclusive, affordable
and com	plete Core	Area.
Policy	5.11.1	Ensure a diverse mix of low and medium density housing forms in the Core Area
Diverse	Housing	that support a variety of households, income levels and life stages.
Forms		The operator of the Boarding house is a non-profit and works with residents with a
		variety of income levels and different stages of life.
Objectiv	e 5.12 Prot	ect citizens from displacement due to Core Area development
Policy	5.12.1	Prioritize the development of subsidized housing and housing with supports in
Housing	with	the Core Area in addition to the Urban Centres, particularly near employment,
Supports		public transit, services and amenities. Promote acceptance to the community for
		these supports, services and the citizens that are using them.
		The Boarding house has been operating out of the principle dwelling for several
		years. It is well established in the neighbourhood and benefits from nearby
		amenities.

6.0 Application Chronology

Date of Application Accepted:	January 17, 2023
Date Public Consultation Completed:	March 1, 2023

Report prepared by:	Jason Issler, Planner I
Reviewed by:	Jocelyn Black, Urban Planning Manager
Reviewed by:	Terry Barton, Development Planning Department Manager
Approved for Inclusion:	Ryan Smith, Divisional Director, Planning & Development Services

Attachments:

Schedule A: Proposed Text Amendment

No.	Section	Current Wording	Propose	d Wording			Reason for Change
1.	WordingSection 11.6 -N/ASite SpecificRegulations,RU4b - DuplexHousing(Boarding andLodging)	1.	Section 11.6 – app Legal Description Lot B District Lot 136 ODYD	Site Specific F oly on a site-sp <i>Civic</i> <i>Address</i> 2473 Ethel Street	Regulations Uses and regulations ecific basis as follows: Regulation Notwithstanding, Section 5.3 General Definitions, & Table 8.3.1a Other Residential Parking,	To allow Boarding and Lodging use to operate within accessory building and provide two parking stalls.	
				Plan 30919.		the following uses and regulations are permitted: • Boarding and Lodging Houses can operate within an accessory building in addition to the Single Detached Housing; and • The minimum parking is two stalls for the	
	SCHEDUL This forms part of a # TA23-0003 Planner Initials JI	E application City Ke	A of lown			 Dourding the Looging use for the site; and The maximum of 14 residents on the subject property. 	

Schedule A – Proposed Site-Specific Text Amendments to Zoning Bylaw No. 12375 TA23-0003

TA23-0003 2473 Ethel St

Text Amendment Application

Purpose

► To amend the zoning bylaw by adding a site-specific text amendment to Zoning Bylaw No. 12375 to allow Boarding or Lodging House within an accessory building, a reduction in minimum parking space requirements, and a maximum of 14 residents on the subject property.

Development Process

kelowna.ca

Context Map

Walk Score

OCP Future Land Use

Subject Property Map

Project Details

- To permit Boarding or Lodging House within accessory building
- C-NHD Core Area Neighbourhood
- Boarding or Lodging House
 - I1 Bedrooms in the house (10 residents 1 employee)
 - 4 new rooms proposed in accessory building
 - 2 parking stalls for employees
 - 14 residents total onsite

OCP Objectives & Policies

Policy 5.11.1 Diverse Housing Forms

- Supports variety of income levels and stages of life.
- Policy 5.12.1 Housing with Supports
 - Part of the neighbourhood for several years and benefits from nearby amenities.

Staff Recommendation

Staff recommend support for the proposed Text Amendment as it is consistent with:

- OCP Future Land Use C-NHD
- OCP Objectives in Chapter 5 Core Area
 - Diverse Housing Forms
 - Housing with Supports

CITY OF KELOWNA

BYLAW NO. 12515 TA23-0003 2473 Ethel St

A bylaw to amend the "City of Kelowna Zoning Bylaw No. 12375".

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

- THAT City of Kelowna Zoning Bylaw No. 12375, Section 11 Single and Two Dwelling Zones, be amended by adding Section 11.6 – Site Specific Regulations in its appropriate location as follows:
 - w

	Section 11.6 – Site Specific Regulations Uses and regulations apply on a site-specific basis as follows:				
	Legal Description	Civic Address	Regulation		
1.	Lot B District Lot 136 ODYD Plan 30919	2473 Ethel Street	 Notwithstanding, Section 5.3 General Deinitions, & Table 8.3.1a Other Residential Parking, the following uses and regulations are permitted: Boarding and Lodging Houses can operate within an accessory building in addition to the Single Detached Housing; and The minimum parking is two stalls for the Boarding and Lodging use for the site; and The maximum of 14 residents on the subject property 		

w

2. This bylaw shall come into full force and effect and is binding on all persons as and from the date of adoption.

Read a first time by the Municipal Council

Considered at a Public Hearing on this

Read a second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

City Clerk

1.0 Recommendation

THAT Council authorizes the issuance of Development Permit No. DP22-0236 for Lot 2, District Lot 135, ODYD, Plan 3929, located at 2609-2611 Richter Street, Kelowna, BC subject to the following:

- The dimensions and siting of the building to be constructed on the land be in accordance with Schedule "A";
- The exterior design and finish of the building to be constructed on the land be in accordance with Schedule "B";
- 3. Landscaping to be provided on the land be in accordance with Schedule "C";
- 4. The applicant be required to post with the City a Landscape Performance Security deposit in the amount of 125% of the estimated value of the Landscape Plan, as determined by a Registered Landscape Architect;

AND THAT the applicant be required to complete the above noted conditions of Council's approval of the Development Permit Application in order for the permits to be issued;

AND FURTHER THAT this Development Permit is valid for two (2) years from the date of Council approval, with no opportunity to extend.

2.0 Purpose

To issue a Development Permit for the form and character of a 5-storey building offering a women's shelter and supportive housing services.

3.0 Development Planning

Staff support the proposed Development Permit for the form and character of the five-storey supportive housing and women's shelter building. The 5-storey proposal is consistent with the Official Community Plan (OCP) Building Height policy maximum of 6 storeys and is consistent with the OCP's Street Character of a Residential Street. The proposal meets all regulations of the Zoning Bylaw. Thus, no variances are requested.

The proposal is also consistent with the OCP Form and Character Design Guidelines for Low-Rise Apartment Developments including an attractive ground floor lobby interface with Richter Street, adequate landscaping with the landscape interface areas, the provision of the private open space, and the inclusion of varied architectural features on the building's façade.

The owner, NOW Canada Society, are providing an important social function by proposing a place of refuge with an integrated continuum of care ranging from emergency shelter services to supportive housing units. This project is funded by BC Housing to provide shelter and below-market rental housing options to women and children.

This project will provide needed housing options to a vulnerable segment of the population and is consistent with the Official Community Plan's desired height and density within the Pandosy Urban Centre. The project is located within an Urban Centre that provides close access to schools, parks, commercial centre, transit, bicycle facilities, and nearby children playground equipment, all of which support this more intensive development on this lot.

4.0 Proposal

4.1 <u>Project Description</u>

The project is designed in a contemporary style with a modern appearance. The project has a mix of high quality cladding materials including: a variety of coloured fiber cement panels, a lux aluminum wood grain vertical material, and a brick veneer along the front portion of the building. The building steps back on both sides above the second storey to reduce the massing impact on adjacent properties. Parking is accessed from the rear lane and is the primary component of the first floor. Shelter services will be located on the second floor with supportive housing dwelling units on floor three through five.

4.2 <u>Site Context</u>

Subject Property Map: 2609-2611 Richter Street

OCP Context Map: 2609-2611 Richter Street

4.3 Zoning Analysis Table

Zoning Analysis Table					
CRITERIA	UC ₅ ZONE REQUIREMENTS	PROPOSAL			
E	Existing Lot/Subdivision Regulations				
Min. Lot Area	n/a	1,050.5 m²			
	Development Regulations				
Max. Floor Area Ratio	1.8	1.3			
Max. Site Coverage (buildings)	85%	71.5%			
Max. Site Coverage (buildings & impermeable surfaces)	90%	87%			
Max. Height	22m / 6 storeys	18.4m / 5 storeys			
Min	imum Setbacks below the 16 metre le	vel			
Min. Front Yard	3.0 M	4.7 M			
Min. Side Yard (north)	0.0 M	1.5 M			
Min. Side Yard (south)	0.0 M	0.0 M			
Min. Rear Yard	0.0 M	3.6 m			
Min	imum Setbacks above the 16 metre le	vel			
Min. Front Yard	3.0 M	4.7 M			
Min. Side Yard (north)	4.0 M	4.0 M			
Min. Side Yard (south)	4.0 M	4.0 M			
Min. Rear Yard	0.0 M	3.6 m			
	Minimum Vehicular Parking	r			
Min. Parking Requirements for Supportive Housing	12	12			
Min. Parking Requirements for Employees	3	3			
Min. Parking Requirements for Visitors	5	5			
Minimum Regular Vehicle Stall Ratio	50%	53%			
Maximum Small Vehicle Stall Ratio	50%	47%			
Min. Loading Space	0	0			
	Minimum Bicycle Parking				
Min. Long Term Bicycle Parking for Supportive Housing	3	8			
Min. Short Term Bicycle Parking	6	6			

5.0 Current Development Policies

Objective 4.9. Transition sensitively to adjacent neighbourhoods and public spaces.			
Policy 4.9.2. Transitioning to Core Area Neighbourhoods	Use height and scale to ensure that buildings avoid height cliffs and shadowing, transitioning gradually to adjacent Corey Area Neighbourhoods		
	The subject property borders the future land use designation of Core Area Neighbourhood. The OCP Building Heights map permits 6 storeys on this property therefore the reduced height of five-storeys helps with shadowing and height cliffs.		

Objective 4.12. Incr and complete Urba	ease the diversity of housing types and tenures to create inclusive, affordable n Centres.
Policy 4.12.1. Diverse Housing Forms	Ensure a diverse mix of medium-density and high-density housing forms that support a variety of households, income levels and life stages.
Policy 4.12.3 Diverse Housing Tenures	Encourage a range of rental and ownership tenures that support a variety of households, income levels and life stages. Promote underrepresented forms of tenure, including but not limited to co-housing, fee-simple row housing, co-ops, and rent-to-own.
	The proposal is proposing a unique shelter and supportive housing proposal for women and children which is encouraged by the diverse housing forms and tenures OCP policies.
Objective 4.13. Prot	tect citizens from displacement due to Urban Centre development.
Policy 4.12.1. Housing with Supports.	 Prioritize the development of subsidized housing and housing with supports in the Urban Centres in addition to the Core Area, particularly near employment, public transit, services and amenities. Promote acceptance by the community for these supports, services and the citizens that are using them. The proposal is proposing supportive housing within the Pandosy Urban Centre.

6.0 Application Chronology

Date of Application Received:	December 16 th 2022
Date Public Consultation Completed:	n/a

Report prepared by:	Adam Cseke, Planner Specialist
Reviewed by:	Jocelyn Black, Urban Planning Manager
Reviewed by:	Terry Barton, Development Planning Department Manager
Approved for Inclusion:	Ryan Smith, Divisional Director, Planning & Development Services

Attachments:

Attachment A: Draft Development Permit DP22-0236

Schedule A: Site Plan and Floor Plans

Schedule B: Elevations

Schedule C: Landscape Plan

Attachment B: OCP Form and Character Development Permit Guidelines

Attachment C: Applicant Rationale

Development Permit

DP22-0236

This permit relates to land in the City of Kelowna municipally known as

2609-2611 Richter Street

and legally known as

Lot 2, District Lot 135, ODYD, Plan 3929

and permits the land to be used for the following development: Shelter and Supportive Housing

The present owner and any subsequent owner of the above described land must comply with any attached terms and conditions.

Date of Council Approval:	April 24 th 2023	
Development Permit Area:	Form and Character Development Permit Area	
Existing Zone:	UC5 – Pandosy Urban Centre	
Future Land Use Designation:	UC – Urban Centre	
This Development Permit is valid for two (2) years <u>from the date of approval</u> , with no opportunity to extend.		

This is NOT a Building Permit.

In addition to your Development Permit, a Building Permit may be required prior to any work commencing. For further information, contact the City of Kelowna, Development Services Branch.

NOTICE

This permit does not relieve the owner or the owner's authorized agent from full compliance with the requirements of any federal, provincial or other municipal legislation, or the terms and conditions of any easement, covenant, building scheme or agreement affecting the building or land.

Owner:

New Opportunities for Women (NOW) Canada Society

Applicant:

Jesse Alexander – New Town Services

Terry Barton Development Planning Department Manager Planning & Development Services Date of Issuance

1. SCOPE OF APPROVAL

This Development Permit applies to and only to those lands within the Municipality as described above, and any and all buildings, structures and other development thereon.

This Development Permit is issued subject to compliance with all of the Bylaws of the Municipality applicable thereto, except as specifically varied or supplemented by this permit, noted in the Terms and Conditions below.

The issuance of a permit limits the permit holder to be in strict compliance with regulations of the Zoning Bylaw and all other Bylaws unless specific variances have been authorized by the Development Permit. No implied variances from bylaw provisions shall be granted by virtue of drawing notations that are inconsistent with bylaw provisions and that may not have been identified as required Variances by the applicant or Municipal staff.

2. CONDITIONS OF APPROVAL

THAT Council authorizes the issuance of Development Permit No. DPP22-0236 for Lot 2, District Lot 135, ODYD, Plan 3929, located at 2609-2611 Richter Street, Kelowna, BC, subject to the following:

- a) The dimensions and siting of the building to be constructed on the land be in accordance with Schedule "A";
- b) The exterior design and finish of the building to be constructed on the land be in accordance with Schedule "B";
- c) Landscaping to be provided on the land be in accordance with Schedule "C";
- d) The applicant be required to post with the City a Landscape Performance Security deposit in the amount of 125% of the estimated value of the Landscape Plan, as determined by a Registered Landscape Architect;

3. PERFORMANCE SECURITY

As a condition of the issuance of this Permit, Council is holding the security set out below to ensure that development is carried out in accordance with the terms and conditions of this Permit. Should any interest be earned upon the security, it shall accrue to the Developer and be paid to the Developer or his or her designate if the security is returned. The condition of the posting of the security is that should the Developer fail to carry out the development hereby authorized, according to the terms and conditions of this Permit within the time provided, the Municipality may use enter into an agreement with the property owner of the day to have the work carried out, and any surplus shall be paid over to the property owner of the day. Should the Developer carry out the development as per the conditions of this permit, the security shall be returned to the Developer or his or her designate following proof of Substantial Compliance as defined in Bylaw No. 12310. There is filed accordingly:

a) An Irrevocable Letter of Credit OR certified cheque OR a Surety Bond in the amount of \$32,069.62 (The Landscape estimate of \$25,655.70 x 125%)

Before any bond or security required under this Permit is reduced or released, the Developer will provide the City with a statutory declaration certifying that all labour, material, workers' compensation and other taxes and costs have been paid.

4. INDEMNIFICATION

Upon commencement of the works authorized by this Permit the Developer covenants and agrees to save harmless and effectually indemnify the Municipality against:

a) All actions and proceedings, costs, damages, expenses, claims, and demands whatsoever and by whomsoever brought, by reason of the Municipality said Permit.

All costs, expenses, claims that may be incurred by the Municipality where the construction, engineering or other types of works as called for by the Permit results in damages to any property owned in whole or in part by the Municipality or which the Municipality by duty or custom is obliged, directly or indirectly in any way or to any degree, to construct, repair, or maintain.

The PERMIT HOLDER is the <u>CURRENT LAND OWNER</u>. Security shall <u>ONLY</u> be returned to the signatory of the Landscape Agreement or their designates.

DP22-0236 Page 2 of 2 67

NOW Canada - Women's Shelter

ARCHITECTURAL

NEW TOWN ARCHITECTURE & ENGINEERING 200-1464 ST. PAUL STREET KELOWNA, BC V1Y 2E6 e: roman@newtownservices.net t: (250) 860-8185

0.00D	COVER PAGE
).02D	ZONING & BYLAW
1.01D	SITE PLAN
3.01D	LEVELS 2 + 3 FLOOR PLANS
3.02D	LEVELS 4, 5 + ROOF PLANS
3.11	DETAIL PLANS
4.00D	MATERIALS
4.01D	BUILDING ELEVATIONS
4.02D	BUILDING ELEVATIONS
5.01D	BUILDING SECTIONS
9.01D	RENDERINGS

RE-ISSUED FOR DP, 2023-03-10

CIVIL ENGINEERING

NEW TOWN ARCHITECTURE & ENGINEERING 200-1464 ST. PAUL STREET KELOWNA, BC V1Y 2E6 e: jacob@newtownservices.ca t: (250) 860-8185

LANDSCAPE

MK DESIGN GROUP 1101 SPRING CREEK DR CANMORE, AB T1W 0M6 e: milana@mk-designgroup.com t: (778) 955-8995

LA Th pro dra	
	WVS OF THE PROVINCE OF BRITISH COLUMBIA is drawing is an instrument of service and the operty of New Town Services. The use of this awing shall be restricted to the original site for which was prepared and sublication theory for which
it v lim	was prepared and publication thereof is expressly nited to such use.
Th Ve	is drawing must not be scaled rrify all dimensions and datums prior to
co Re	mmencement of work.
	NEW TOWN
	A R C H I T E C T U R E U R BA N P L ANNING
	www.newtownservices.ca
	Seal
	NILED ARCHINI
	S G LAMCHSHIK
	ROWA
	= Munisimet
	TITISH COTTON
	Revisions
No.	DATE DESCRIPTION
4	2023-03-10 RE-ISSUED FOR DP
	project title
	project title NOW CANADA - WOMEN'S
	project title NOW CANADA - WOMEN'S SHELTER project address
	project title NOW CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET
	project title NOW CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET
	project title NOW CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET
	project title NOW CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET
	project title NOV CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET
	<section-header><text><section-header><text><text><text><text></text></text></text></text></section-header></text></section-header>
	project title MOV CANADA - WOMEN'S project address project address 2609 RICHTER STREET Song RICHTER STREET Song RICHTER STREET Market Market M
	project title MOV CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET 2609 RICHTER STREET project legal description LOT 2 DISTRICT LOT 105 PLAN KAP3929 In marticelocological description Marticelocological description Marticelocologic
	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>
	<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>
	<section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header>
	<text><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></text>
	<form><section-header><section-header><section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></form>
	project title MOV CANADA - WOMEN'S SHELTER project address 2609 RICHTER STREET 2609 RICHTER STREET project legal description Data DISTRICT LOT 18 no. 4165 Maria description COVER PAGE

PROJECT NAME		SPECIFIC BUILT FORM		
<u>ADDRESS:</u> 2609 RICHTER STREET, KELOWNA, V1Y 2R3, BRITISH	I COLUMBIA, CANADA	REQUIRE		
<u>LEGAL ADDRESS:</u> LOT 2 DISTRICT LOT 135 PLAN KAP3929		GROUND ORIENTED:		
GRADES:		REDUCED SETBACK2.0mMAX. 1st FLOOR HEIGHT1.2mMIN. 1st FLOOR AREA11m²		
NUMBER OF BUILDINGS:	PROPOSED. PLAT			
ONE BUILDING		UPPER FLOOR SETBACK ABUTTING STREET 3.0m		
		CORNER LOT TRIANGULAR SETBACK N/A URBAN PLAZA Y / N		
ZUINIING AINAL 1 515 Existing:	PROPOSED:			
UC5 - PANDOSY URBAN CENTRE				
TRANSIT SUPPORTED CORRIDOR	NO			
ZONE ADJACENT LAND USES:	USE			
NORTH P4 SOUTH MF1	TELEPHONE RESIDENTIAL			
WEST P3	PARK			
UC5 ZONING REQUIR	FMENTS			
	PROPOSED:			
SITE AREA (m²) 460m²	1.050.47m ²			
SITE WIDTH (m)	1,000.4711			
13.0m SITE DEPTH (m)	19.72m			
	52.95m			
30.0m				
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85%	71.5%			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90%	71.5% TURES 87.0%			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS	71.5% TURES 87.0% SED ROAD			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS	71.5% TURES 87.0% SED ROAD REAR LANE			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU	71.5% TURES 87.0% REAR LANE			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED:	71.5% TURES 87.0% REAR LANE TIREMENTS PROPOSED:			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A	71.5% TURES 87.0% REAR LANE REAR LANE IREPOSED: 34 UNITS			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR)	TURES 87.0% SED ROAD REAR LANE JIREMENTS PROPOSED: 34 UNITS 1350.27m ² (740.69 GFA FOR SITE COVERAGE)			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8	TURES 87.0% REAR LANE REAR LANE DIREMENTS PROPOSED: 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS	71.5% TURES 87.0% SED ROAD REAR LANE JIREENENTS JIROPOSED: 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m):	71.5% Stores 87.0% Store Construction REAR LANE JIREENEENES PROPOSED: 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m SIDE A (NORTH) 0.0m	71.5% TURES Sed ROAD REAR LANE DIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JIREMENTS JISO.27m² (740.69 GFA FOR SITE COVERAGE) J.29 JIAm / 5 STOREYS 4.7m J.0m			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m SIDE B (SOUTH) 0.0m BACK (EAST) 0.0m	71.5% a7.0% Sed ROAD REAR LANE DIREMENTS JIREMENTS JIREMENT			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m	71.5% strutters STRENTS JREENTS JIRE NTS			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SIDE A (NORTH) 3.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE B (SOUTH) 4.0m SIDE B (SOUTH) 4.0m BACK (EAST) 0.0m	71.5% tures 87.0% sed rood REAR LANE JIREEMENTS JIREOPOSED: 34 UNITS 350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS 1.29 3.6m			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m	71.5% TURES REAR LANE DIPEDEEDEE JUNITS 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS 4.7m 0.0m 3.6m 12.STALLS (0.35 x 34 = 11.9)			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m PARKING STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS PER NON-RESIDENT ON DUTY EMPLOYEE OR 3.0 STALLS (WHICHEVER IS OPER TEP)	71.5% TURES See non REAR LANE DIREMENTS DROPOSED: 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 1.47m 0.0m 0.17m 0.17m <td c<="" td=""><td></td></td>	<td></td>		
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m SIDE B (SOUTH) 0.0m SIDE B (SOUTH) 0.0m SIDE B (SOUTH) 0.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m PARKING STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS PER NON-RESIDENT ON DUTY EMPLOYEE OR 3.0 STALLS (WHICHEVER IS GREATER) VISITOR	71.5% TURES 87.0% See Road REAR LANE JIREMENTS JROPOSED: 34 UNITS 350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS 4.7m 0.0m 3.6m 1.29 18.4m / 5 STOREYS 1.29 18.4m / 5 STOREYS 1.29 18.4m / 5 STOREYS 1.29 1.20 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.20 3.6m 1.21 1.22 1.23 1.24 1.25			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: NA FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m SIDE B (SOUTH) 0.0m SIDE B (SOUTH) 0.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m PARKING STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS PER NON-RESIDENT ON DUTY EMPLOYEE OR 3.0 STALLS (WHICHEVER IS GREATER) VISITOR 0.14 PER DWELLING UNIT TOTAL (MIN REQUIRED)	71.5% TURES 87.0% See Road REAR LANE JIREMENTS JROPOSED: 34 UNITS 1350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS 1.29 18.4m / 5 STOREYS 3.6m 4.7m 0.0m 3.6m 4.7m 3.6m 1.2 STALLS (0.35 x 34 = 11.9) 3 STALLS 5.5TALLS (0.14 x 34 = 4.76)			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 5.00 SIDE A (NORTH) 5.00	71.5% TURES 87.0% See ROAD REAR LANE JIREENESE JROPOSED: 34 UNITS 350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 18.4m / 5 STOREYS 4.7m 0.0m 3.6m 4.7m 0.0m 3.6m 12 STALLS (0.35 x 34 = 11.9) 3 STALLS 20 STALLS 20 STALLS 20 STALLS			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE B (SOUTH) 4.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 5.0 M SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m SIDE A (NORTH) 4.0m SIDE A (NOR	71.5% srow solow Rear LANE JIREENENES JIREENENENENES <td colspan="2" jireenenes<="" t<="" td=""><td></td></td>	<td></td>		
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: NA FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SIDE B (SOUTH) 0.0m SIDE B (SOUTH) 0.0m BACK (EAST) 0.0m SIDE A (NORTH) 4.0m SIDE B (SOUTH) 4.0m BACK (EAST) 0.0m VISITOR 0.14 PER DWELLING UNIT TOTAL (MIN REQUIRED) TOTAL (MIN REQUIRED) DRIVE AISLE (WIDTH) 6.0 - 6.5m DRIVE AISLE (WIDTH) 6.0 - 6.5m DRIVE AISLE GRADE 8% REGULAR STALL RATIO 50% SMALL STALL RATIO 50%	71.5% 87.0% SEA ROAD REAR LANE JIREMENTS JIREMENTS JOS COLSTING OF A FOR SITE COVERAGE) J UNITS 34 UNITS J350.27m² (740.69 GFA FOR SITE COVERAGE) 1.29 1.84m / 5 STOREYS 4.7m 0.0m 0.0m 0.0m 0.0m 0.0m O STALLS (0.35 x 34 = 11.9) 3 STALLS (0.14 x 34 = 4.76) 20 STALLS D STALLS 6.0 - 6.9m 1.2% SO%			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC & IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m²): 1890.85m² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m BACK (EAST) 0.0m SIDE B (SOUTH) 4.0m SIDE B (SOUTH) 6.0 - 6.5m ON NIVE AISLE (WIDTH) 6.0 - 6.5m DRIVE AISLE (WIDTH) 6.0 - 6.5m DRIVE AISLE GRADE 8% REGULAR STALL RATIO 50% SMALL STALLS 700 BIKE STALLS: 1.0 PER 20 DWELLING UNITS 1.0 PER 20 DWELLING UNITS 1.0 PER 20 DWELLING UNITS 1.0 PER 10 EMPLOYEES	71.5% TURES SPROPOSED: JIREENES PROPOSED: 34 UNITS 1.29 18.4m / 5 STOREYS 4.7m 0.0m 0.0m 0.0m 0.0m 0.0m 3.6m 12 STALLS (0.35 x 34 = 11.9) 3 STALLS 20 STALLS 20 STALLS 6.0 - 6.9m 1.2% STALLS (0.34/20 = 1.7) STALLS (0.34/20 = 1.7)			
30.0m MAXIMUM SITE COVERAGE FOR BUILDINGS (%) 85% MAXIMUM SITE COVERAGE FOR BUILDINGS, STRUC 8 IMPERMEABLE SURFACES (%) 90% VEHICULAR ACCESS FROM LANE OR LOWER CLASS DEVELOPMENT REQU REQUIRED: TOTAL NUMBER & TYPES OF UNITS: N/A FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA (GFA/NFA)(m ²): 1890.85m ² MAXIMUM (BASED ON 1.8 FAR) FLOOR AREA RATIO: 1.8 BUILDING HEIGHT (m): 22m / 6 STOREYS SETBACKS (m): FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 0.0m BACK (EAST) 0.0m SETBACKS OVER 16M FRONT (WEST) 3.0m SIDE A (NORTH) 4.0m BACK (EAST) 0.0m PARKING STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS: 0.35 PER SLEEPING UNIT 0.5 STALLS (WHICHEVER IS GRATER) VISITOR 0.14 PER DWELLING UNIT TOTAL (MIN REQUIRED) TOTAL (PROVIDED) DRIVE AISLE (WIDTH) 6.0 - 6.5m DRIVE AISLE GRADE 8% REGULAR STALL RATIO 50% SMALL STALL RATIO 50% SMALL STALL SE 1.0 PER 20 DWELLING UNITS 1.0 PER 20 DWELLING UNITS 2.0 PER 20 DWELLING UNITS 2.0 PER 20 D	71.5% TURES SPOPOSED: JIREMENTS JIREMEN			

NORTH

N/A N/A N/A 4.7m N/A NO

PROPOSED:

VIEW FROM RICHTER STREET

VIEW FROM REAR LANE

111

This forms part of application # DP22-0236 City of Planner Initials AC Kelowna	SCHEDULE	A & B
# DP22-0236 City of Kelowna	This forms part of appli	cation
Planner AC City of Kelowna	#_DP22-0236	🕅 🕺
Planner Initials AC Kelowna		City of
DEVELOPMENT PLANNING	Planner Initials AC	Kelowna development planning

ALL CONTRACTORS ARE REQUIRED TO PERFORM THEIR WORK AND SUPPLY THEIR PRODUCTS IN COMPLIANCE WITH ALL BUILDING CODES AND LAWS OF THE PROVINCE OF BRITISH COLUMBIA This drawing is an instrument of service and the property of New Town Services. The use of this drawing shall be restricted to the original site for which it was prepared and publication thereof is expressly limited to such use. This drawing must not be scaled Verify all dimensions and datums prior to commencement of work. Report all errors and omissions to the Architect. Revisions No. DATE DESCRIPTION 4 2023-03-10 RE-ISSUED FOR DP 111 project title project address ш project legal description project no. _____ drawing title S BYLAW () Designer drawn checked

NEW TOWN A R C H I T E C T U R E U R BA N P L ANNING CIVIL ENGINEERING www.newtownservices.ca NOW CANADA - WOMEN'S SHELTER 2609 RICHTER STREET LOT 2 DISTRICT LOT 135 PLAN KAP3929 4165 file no. C:(Users\Jenna\Documents\4165 NOW WS - Central jennaZRSJF.rvt ZONING & scale 1:10

1 LEVEL 1 / PARKADE

This forms part of application # DP22-0236	
Cit	y of 🥨
Planner Initials AC	EIOWNA

Σ M ш 111 () ()

ALL CONTRACTORS ARE REQUIRED TO PERFORM THEIR WORK AND SUPPLY THEIR PRODUCTS IN COMPLIANCE WITH ALL BUILDING CODES AND LAWS OF THE PROVINCE OF BRITISH COLUMBIA

This drawing is an instrument of service and the property of New Town Services. The use of this drawing shall be restricted to the original site for which it was prepared and publication thereof is expressly

limited to such use.

This drawing must not be scaled

commencement of work.

Verify all dimensions and datums prior to

Report all errors and omissions to the Architect.

A1.01D

plotted

2 Level 3 A0.04 1/8" = 1'-0"

 \bigcirc

4165

ALL CONTRACTORS ARE REQUIRED TO PERFORM THEIR WORK AND SUPPLY THEIR PRODUCTS IN

SCHEDULE	A & B
This forms part of appl	lication
# DP22-0236	🕅 🕺
	City of
Planner Initials AC	Kelowna DEVELOPMENT PLANNING

111 111 S ()

project no.

____ drawing title

		EW TOWN RCHITECTURE BAN PLANNING VIL ENGINEERING ww.newtownservices.ca
	Seal	
	Povisions	Munchishiro
No.	DATE	DESCRIPTION
4	2023-03-10	RE-ISSUED FOR DP
	project ti NOW SHEL project a 2609	itle CANADA - WOMEN'S TER Iddress RICHTER STREET
	project le LOT 2 135 P	egal description 2 DISTRICT LOT LAN KAP3929

ALL CONTRACTORS ARE REQUIRED TO PERFORM THEIR WORK AND SUPPLY THEIR PRODUCTS IN COMPLIANCE WITH ALL BUILDING CODES AND LAWS OF THE PROVINCE OF BRITISH COLUMBIA

This drawing is an instrument of service and the property of New Town Services. The use of this drawing shall be restricted to the original site for which it was prepared and publication thereof is expressly

limited to such use.

This drawing must not be scaled

commencement of work.

Verify all dimensions and datums prior to

Report all errors and omissions to the Architect.

file no. C:\Users\Jenna\Documents\4165 NOW WS - Central_jennaZRSJF.rdt

LEVELS 4, 5 +

ROOF PLANS

RM/JK

4165

1/8" = 1'-0"

RM/JK

FIBER CEMENT PANEL - GREY (#3)

LUX ALUMINUM WOOD GRAIN VERTICAL (#1)

BRICK VENEER - GREY (#6)

FIBER CEMENT PANEL - WHITE (#2)

FIBER CEMENT PANEL - BLUE (#4)

CONCRETE WALL / COLUMN (#8 & #9)

GLASS RAILING (#10)

SAMPLE FOR COLOUR PURPOSES ONLY

Σ ш M ш 111 5 5

ALL CONTRACTORS ARE REQUIRED TO PERFORM HEIR WORK AND SUPPLY THEIR PRODUCTS IN COMPLIANCE WITH ALL BUILDING CODES AND
AWS OF THE PROVINCE OF BRITISH COLUMBIA his drawing is an instrument of service and the roperty of New Town Services. The use of this rawing shall be restricted to the original site for which was prepared and publication thereof is expressly
mited to such use.
/erify all dimensions and datums prior to ommencement of work.
Report all errors and omissions to the Architect.
NEW TOWN
U R BA N P L ANNING CIVIL ENGINEERING
www.newtownservices.ca
Seal
Contraction of the second of t
Revisions
DATE DESCRIPTION
2023-03-10 RE-ISSUED FOR DP
project title
NOW CANADA - WOMEN'S
SHELIER project address
2609 RICHTER STREET
project legal description
LOT 2 DISTRICT LOT 135 PLAN KAP3929
file no. C:(Users)Jennal;Documents):4165 NOW WS - Central Jenna2RSJF.nt
MATERIALS
designed scale 1 : 10
drawn Author checked
drawing no.

3/10/23 2:24:12 PM

plotted

74

plotted

LAWS OF THE	PROVINCE OF BRITISH COLUMBIA an instrument of service and the
property of New drawing shall be it was prepared	Town Services. The use of this restricted to the original site for which and publication thereof is expressly
This drawing mu	ist not be scaled
Verify all dimens commencement	sions and datums prior to of work.
Report all errors	and omissions to the Architect.
N	EW TOWN RCHITECTURE
U R C I W	EAN PLANNING VIL ENGINEERING ww.newtownservices.ca
Seal	
	INTED ARCHIT
1111	G ALAMCHSAIL
	1 minute
111T	
	MITISHCOVINI
Revisions	. "***** . * . ***
o. DATE	DESCRIPTION RE-ISSUED FOR DP
10	
· · · · · · · · · · · · · · · · · · ·	
· · ·	
	· · · · · · · · · · · · · · · · · · ·
· ·	
· ·	
•	
project ti	
SHEL	
project a	RICHTER STREET
project le	egal description
135 P	LAN KAP3929
project r	^{10.} 4165
file no. drawing	C:\Users\Jenna\Documents\4165 NOW WS - Central JennaZRSJF.rvt
BU	ILDING
ELE	EVATIONS
	l costo
designed drawn	RM/JK scale As indicated

3/10/23 2:24:23 PM

plotted

ALL CONTRAC THEIR WORK A COMPLIANCE LAWS OF THE This drawing is property of New drawing shall be it was prepared limited to such u This drawing mu Verify all dimens commencement Report all errors	TORS ARE REQUIRED TO PERFORM AND SUPPLY THEIR PRODUCTS IN WITH ALL BUILDING CODES AND PROVINCE OF BRITISH COLUMBIA an instrument of service and the Town Services. The use of this erstricted to the original site for which and publication thereof is expressly use. Ist not be scaled sions and datums prior to to work. The original sector of the transformer to the transforme
11/1/11/11/11/1	ARCHING CAMARCHSHILD CAMARGUMACHS ANTISHCOLUMIN
Revisions	DESCRIPTION
4 2023-03-10	RE-ISSUED FOR DP
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
- - - - - - - - - - - - - - - - - - -	
project t NOW SHEL project a 2609 project a LOT 2 135 P project r file no. drawing BU SE designed drawn checked	ittle CANADA - WOMEN'S TER address RICHTER STREET egal description DISTRICT LOT LAN KAP3929 DO 4165 CUBERS/JORNEDCUMENTS/JETT TILE IDDING CTUBERS/JETTION IN IN IN IN IN IN IN IN IN IN IN IN IN

3/10/23 2:24:27 PM

VIEW LOOKING NORTH EAST - FRONT ELEVATION

VIEW LOOKING NORTH WEST - REAR ELEVATION

VIEW LOOKING SOUTH EAST - FRONT ELEVATION

R LL. = 11 5 U A & B This forms part of application #_DP22-0236

SCHEDULE

Initials

City of

Kelowna

	Revisions								
No.	DATE	DESCRIPTION							
4	2023-03-10	RE-ISSUED FOR DP							

ALL CONTRACTORS ARE REQUIRED TO PERFORM THEIR WORK AND SUPPLY THEIR PRODUCTS IN COMPLIANCE WITH ALL BUILDING CODES AND LAWS OF THE PROVINCE OF BRITISH COLUMBIA

1:10 Designer Author Checker **A9.0** plotted 3/10/23 2:24:28 PM

4165

C:\Users\Jenna\Documents\4165 NOW WS - Central_jennaZRSJF.rvt

Date: 27-Mar-23 Project No: C22-11 Project Address: 2609 Richter St, Kelowna BC Municipal Project No:

PROPOSED LANDSCAPE COSTS

SOFTSCAPE			Unit	Otv	Unit Cost	Total Cost	
Supply	& install with 1 year warranty	5120	Onit	Quy	Onit Cost	Total Cost	
1.0	Deciduous Tree	5cm cal.	each	1	\$500.00	\$500.00	
1.1	Deciduous Tree	4cm cal.	each	1	\$400.00	\$400.00	
1.2	Shrubs (min 40cm ht)		each	10	\$22.00	\$220.00	
1.3	Shrubs (min 150cm ht)	#5 cont.	each	15	\$72.00	\$1,080.00	
1.4	Perennials/Grasses/Ground Cover	#1 cont.	each	65	\$12.50	\$812.50	
1.5	Sod + 150mm growing medium	area	m2	11.4	\$18.00	\$205.20	
1.6	Growing Medium	volume	m3	50.60	\$30.00	\$1,518.00	
1.7	Root Barrier	length	lm	14.55	\$32.00	\$465.60	
Softscape Total							

HAR	DSCAPE	Size	Unit	Qty	Unit Cost	Total Cost
2.0	Stamped Concrete	area	m2	19.20	\$125.00	\$2,400.00
2.1	Concrete	area	m2	63.1	\$80.00	\$5,048.00
2.2	River Rock 50-100mm dia. 200mm depth	area	m2	23.8	\$100.00	\$2,380.00
2.3	Boulders 0.8-1.2m dia.		each	4	\$150.00	\$600.00
	\$10,428,00					

Hardscape Total **\$10,428.0**

SITE	FURNISHING	Size	Unit	Qty	Unit Cost	Total Cost	
3.0	Bike Racks		each	3	\$450.00	\$1,350.00	
Site Furnishing Total							

FENCING		Size Unit		Qty	Unit Cost	Total Cost	
4.0	Vinyl Fence 1.8m ht	length	lm	53.3	\$100.00	\$5,330.00	
	·			F	encing Total	\$5,330.00	

Subtotal \$22,309.30 **Contingency 15%** \$3,346.40

PROPOSED LANDSCAPE TOTAL

\$25,655.70

plus applicable taxes

March 28, 2023 Date _____

Landscape Architect Jessica Thiessen Name

Landscape Architect

Signature

SCHEDULE	С
This forms part of applic # DP22-0236	ation
Planner Initials AC	City of Kelowna

NOW CANADA - RICHTER ST ISSUED FOR DEVELOPMENT PERMIT

CONTACT INFORMATION:

Primary Contact:

MK Design Group Milana Malesevich p. 778-955-8995 e. milana.mkdesigngroup@gmail.com

OTHER KEY CONTACTS

NOW Canada Project Owner

Liz Talbot p. 250-763-3876 e. liz@nowcanada.ca 2970 Tutt St Kelowna, BC V1Y 8Z5

Newtown Services Architect

Jesse Alexander p. 250-258-9651 e. jesse@newtownservices.net 1464 St. Paul St Kelowna, BC V1Y 2E6

Bentsen Homes Inc Project Developer

Kane Bentsen p. 250-212-9128 e. kane@bentsenhomes.com 1769 Broadview Ave Kelowna, BC

V1Y 4G3

Site Plan Overview - 1:100

(D)

RICHTER ST. Ĩ

Key Plan - NTS

Project:	Drawn:	Approved:	Key Plan:						
NOW CANADA - RICHTER ST	ММ	TL							
				4	MM	Re-Issued for DP	27/03/2023		
Location:	Scale:			3	MM	Re-Issued for DP	28/02/2023		
	AS SHOWN			2	MM	Issued for Development Permit	02/12/2022		
2609 RICHTER ST	CONTRACTOR SHALL CHEC	K ALL DIMENSIONS ON THE WORK		1	MM	Issued for Review	29/11/2022		
V1Y 2R3	BEFORE PROCEEDING. ALL I ARE THE EXCLUSIVE PROPE	DRAWINGS AND SPECIFICATIONS RTY OF MK DESIGN GROUP.		No.	By	Description	Date: DD/MM/YY		
	AS SHOWN CONTRACTOR SHALL CHECK ALL DIMENSIONS ON THE WORK AND REPORT ANY DISCREPANCY TO THE CONSULTANT BEFORE PROCEEDING. ALL DRAWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE PROPERTY OF MK DESIGN GROUP. REPRODUCTION OF ANY DOCUMENTS OR DRAWINGS ARE NOT PERMITTED WITHOUT WRITTEN PERMISSION BY MK DESIGN GROUP. DO NOT SCALE DRAWINGS.			REVISIONS TABLE FOR DRAWINGS					
2609 RICHTER ST KELOWNA, BC V1Y 2R3				2 1 No. REV	MM MM By ISIONS	Issued for Development Permit Issued for Review Description 5 TABLE FOR DRAWINGS	02/12/2022 29/11/2022 Date: DD/MM/YY		

Sheet List Table Sheet Title Sheet Number COVER SHEET L-00 LANDSCAPE PLAN L-01 LD-01 LANDSCAPE DETAILS LN-01 LANDSCAPE NOTES

PROFESSIONAL STAMP/SEAL

\Box \supset 20 U Z U S \cap

		(THIS PAGE) (THIS PAGE) (THIS PAGE)	G PLAN, 2 L-01 FFSET							PL
;	/		— 1.8M HT PRIVACY FEN	CE						
RICHTER ST				BUILDIN	GFOOTPRINT					
1 Scale	E PLAN 1:100 NPE LEGEN	ND						1:100	0 1m 2 3 4 5	678
KEY	REF.	DESCRIPTION			PLANT SCHED	ULE				
	1 & 2	SHRUBS & PERENNIALS	LANDSCAPE FRONTAG	E CALC.	KEY QUANTITY SHRUBS	BOTANICAL NAME	COMMON NAME	CONTAINER SIZE	SPACING	
	LD-01		As per Bylaw 12375		Az 15 PERENNIALS/GRASSES	Azalea 'Hino Krimsin'	Azalea Red Flowered	#5 Pot	800mm O.C.	
	(1 & 2 LD-01	GROUNDCOVER	Project Frontage Area (m2) Frontage Soil Area (m2)	Soil within ontage	C 10	Calamagrostis brachytricha	Korean Feather Reed Grass	#2 Pot	600mm O.C.	
	5	CIP CONCRETE Inlay: Natural light sand blast	59.40 47.02	79.16	D 7	Digitalis purpurea 'Camelot Cream'	Cream Camelot Foxglove	#1 Pot	300mm O.C.	
	LD-01	Border: Stamped Running Bond Pattern, tinted 'Dusk' as per Lafarge Artevia Concrete, or approved equal			H 11	Heuchera 'Caramel' Lavendula angustifolia	Caramel Coral Bells	#1 Pot	450mm O.C.	
	4 LD-01	200mm DEPTH OF $\frac{3}{4}$ " - 1.5" RIVER STONE WITH ROMEX ROMPOX PROFI-DECKO Install as per manufacturer's instructions	TREE LEGEND		P 25	'Hidcote Superior' Phlox subulata 'Candy Stripe'	Candy Stripe Phlox	#1 Pot	600mm O.C.	
	1 LD-01 6 LD-01	400mm DEEP ROOT BARRIER ALONG HARDSCAPE & TIMBER EDGE ADJACENT TO PROPOSED TREE AS INDICATED Install as per manufacturer's instructions NVP 1.8m (6 FT) PRIVACY FENCE Posts: Clay Rails: Clay Install as per manufacturer's instructions ARMOUR STONE - VARIOUS SIZES MIN SIZE 500mm X 500mm MAX 350mm ABOVE GRADE	Cercidiphyllum ippopicum	sica	TREE CALCULA As per Bylaw 12375 Table Project Landscape Area (m2) 50.600000	ATION e 7.2 Project Linear Frontage (M) Tree Calcula Project Lands	tion: scape Area / 30m2 = 1 Tree 1.7	Tree Calculation: Project Landscape L	inear Frontage / 10 lin M = 1 1.5	Tota Tree Qua
		SOD LEVEL 1 'WELL GROOMED' AS PER THE]						I
		CANADIAN LANDSCAPE STANDARD	TREES							
¢	8 LD-01	BIKE RACK Colour: Galvanized Mounting: Surface Mount Spacing: 762mm (30") O.C.	QUAN.KEYBOTANICA1see legendCercidiphyllum ja1see legendParrotia persica	aponicum	COMMON NAME Katsura Tree Persian Ironwood	SIZE B+B; 5cm caliper; 1.8m standard B+B; 4cm caliper; 1.8m standard	SPACING KELO As shown Large As shown Mediu	OWNA TREE CLASS	S. ACCESSIBLE SO 30.0m3 20.6m3	IL QTY.
Project:		Drawn: Approved:	Key Plan:							
NOW CANADA - RIC	CHTER ST	MM JT		MM Do loove	for DP 27/02/2022			REGISTERED		
Location:		Scale:		MM Re-Issued	a rot Dr 27/03/2023 d for DP 28/02/2023			JESSICA THIESSEN		
2609 RICHTER ST		AS SHOWN	RK 2	MM Issued fo MM Issued fo	r Development Permit 02/12/2022 r Review 29/11/2022			APPE ANCHINE		
KELOWNA, BC V1Y 2R3		AND REPORT ANY DISCREPANCY TO THE CONSULTANT BEFORE PROCEEDING. ALL DRAWINGS AND SPECIFICATIONS ARE THE EXCLUSIVE PROPERTY OF MK DESIGN GROUP. REPRODUCTION OF ANY DOCUMENTS OR DRAWINGS ARE NOT PERMITTED WITHOUT WRITTEN PERMISSION BY MK DESIGN GROUP. DO NOT SCALE DRAWINGS.	S No	b. By Descripti	on Date: DD/MM/Y	Y	PROFESSIONA	2023-04-04	DESIG	IN GROU

-				
QUANTITY	BOTANICAL NAME	COMMON NAME	CONTAINER SIZE	SPACING
	-	-		
15	Azalea 'Hino Krimsin' Azalea Red Flowered		#5 Pot	800mm O.C.
S/GRASSES		_		
10	Calamagrostis brachytricha	Korean Feather Reed Grass	#2 Pot	600mm O.C.
7	Digitalis purpurea 'Camelot Cream'	Cream Camelot Foxglove	#1 Pot	300mm O.C.
11	Heuchera 'Caramel'	Caramel Coral Bells	#1 Pot	450mm O.C.
22	Lavendula angustifolia 'Hidcote Superior'	Hidcote Lavender	#1 Pot	450mm O.C.
25	Phlox subulata 'Candy Stripe'	Candy Stripe Phlox	#1 Pot	600mm O.C.
	QUANTITY 15 5/GRASSES 10 7 11 22 25	QUANTITYBOTANICAL NAME15Azalea 'Hino Krimsin'15Azalea 'Hino Krimsin'S/GRASSESIo10Calamagrostis brachytricha7Digitalis purpurea 'Camelot Cream'11Heuchera 'Caramel'22Lavendula angustifolia 'Hidcote Superior'25Phlox subulata 'Candy Stripe'	QUANTITYBOTANICAL NAMECOMMON NAME15Azalea 'Hino Krimsin'Azalea Red Flowered15Azalea 'Hino Krimsin'Azalea Red Flowered5/GRASSES5/GRASSES10Calamagrostis brachytrichaKorean Feather Reed Grass7Digitalis purpurea 'Camelot Cream'Cream Camelot Foxglove11Heuchera 'Caramel'Caramel Coral Bells22Lavendula angustifolia 'Hidcote Superior'Hidcote Lavender25Phlox subulata 'Candy Stripe'Candy Stripe Phlox	QUANTITYBOTANICAL NAMECOMMON NAMECONTAINER SIZE15Azalea 'Hino Krimsin'Azalea Red Flowered#5 Pot15Azalea 'Hino Krimsin'Azalea Red Flowered#5 Pot5/GRASSES10Calamagrostis brachytrichaKorean Feather Reed Grass#2 Pot10Calamagrostis brachytrichaKorean Feather Reed Grass#1 Pot7Digitalis purpurea 'Camelot Cream'Cream Camelot Foxglove#1 Pot11Heuchera 'Caramel'Caramel Coral Bells#1 Pot22Lavendula angustifolia 'Hidcote Superior'Hidcote Lavender#1 Pot25Phlox subulata 'Candy Stripe'Candy Stripe Phlox#1 Pot

As per Bylaw 12375 Ta	able 7.2			
Project Landscape Area (m2)	Project Linear Frontage (M)	Tree Calculation: Project Landscape Area / 30m2 = 1 Tree	Tree Calculation: Project Landscape Linear Frontage / 10 lin M = 1 Tree	Total Quar
50.600000	15	1.7	1.5	2

CRITICAL LANDSCAPE NOTES:

PROJECT CONTACT:

1.1 Inquiries regarding landscape drawings should be addressed to:

PRIMARY CONTACT:

Milana Malesevich. Principal P. 778-955-8995 milana@mk-designgroup.com

PROJECT COORDINATION:

2.1 The contractor(s) responsible for completing the landscape scope of work shall conform to the reference standards, submittals process, coordination standards, specifications, and works as defined under the "Division 1 General Requirements" of the master specification (complete).

DRAWINGS AND SPECIFICATIONS:

3.1 The contractor, sub-contractor, and coordinating trades/suppliers responsible for completing the landscape scope of work is responsible for reviewing the master specification package for the project in conjunction with all consultant drawings, inclusive of landscape.

3.2 Should any drawing or detail conflict with the master specification file the contractor must immediately notify the design team for coordination prior to order, preparation or installation of said conflicting works (typ).

3.3 Examples of key specifications that relate to landscape are inclusive of:

- Division 1, General Requirements
- Division 2, Existing Conditions
- Division 3, Concrete
- Division 4, Masonry
- Division 5, Metals
- Division 6, Wood and plastics
- Division 7, Thermal and Moisture Protection
- Division 9, Painting and Coating
- Division 31, Earthwork
- Division 32, Exterior Improvements

3.4 The contractor(s) responsible for completing hard and soft landscape works are responsible for providing the landscape architect with a complete "project record copy" of mark-ups or changes to works defined in the Landscape Drawings. This is in addition to any record drawing requests defined under Division 1. The project record copy mark-ups should be completed with red pen if submitted as a hard copy or in red coloured notes if submitted as a PDF.

LANDSCAPE CONCRETE WORK:

4.1 All concrete shall conform to all standards identified under Division 3 of the master specification and specifications by the Civil Engineer (refer to civil drawings, with references to MMCD specs) (complete)

4.2 Concrete reinforcing for vertical landscape cast in place walls shall comply with details and specifications defined in structural drawing.

4.3 All horizontal exterior concrete surfaces shall have a light broom finish or approved equal unless specified otherwise

4.4 All vertical concrete surfaces inclusive of cast in place walls shall have a light sand blast finish or approved equal unless specified otherwise

4.5 The contractor should confirm the locations of control joint patterning and expansion joints with the landscape architect prior to installation for concrete paving surfaces and walls

UNIT PAVING:

5.1 Precast concrete unit pavers or natural stone unit pavers must be provided in a 2m x 2m 'mock-up' on site a minimum 2 weeks prior to order of materials for approval by the landscape architect. The mock-up should be installed as per manufacturer's specifications and include any bedding material, pedestals, grouts or mortar specified in project drawings or specifications. Grouts, mortars, sealers, or products that require drying time must have been installed a minimum 3 business days prior to the time of review by the landscape architect.

5.2 All approved unit paving and bedding or joining materials should be installed as per manufacturers specifications

5.3 Professionals should be qualified and experienced (minimum 5 years) in

METALS:

6.1 All metal work shall conform to Division 4 of the master specification for the project (complete)

6.2 Additional references that apply to metal work (may not necessarily be included under Division 4):

- Barbed Wire.
- Materials/Products.

6.3 All metal work shall be treated for protection from corrosion (i.e. Aluminum must be anodized and steel must be galvanized or stainless steel) prior to additional coatings of paints or sealers. This is inclusive of fasteners.

6.4 All metal bonding (i.e. welding or soldering) must be completed and metal work should be treated for protection from corrosion. Bonding work should be concealed by the finishes of the metal work. Sanding or handwork needed to provide a smooth and consistent finish along the bonded metal material should be done to match the finish of the metals used for joining

6.5 Install a grounding rod on all fences, metal posts or poles taller than 6' (1800mm) in height through the direction of the project electrical engineer. Contractor to confirm the location(s) of said work at the time of project start-up with the electrical engineer and landscape architect

FENCING & GUARDRAILS: 7.1 All fences, fasteners and railings shall be submitted via shop drawing and submitted for approval by the landscape architect prior to purchase or installation

7.2 All fasteners used in wood connections (i.e. screws, nails, etc) are to be countersunk and predrilled to prevent wood splitting unless specified otherwise

7.3 All anchor plates, hangers, and affiliated fastener joining materials must meet flush between joining surfaces without gaps, unless specified otherwise

7.4 All railing heights, picket spacing, and rail spacing should be in accordance with the British Columbia Building Code, CAN/CSA - Z614-07 and affiliated ASTM standards

IRRIGATION:

8.2 Irrigation work should be completed by and installer with over 5 years experience in irrigation work

8.3 Refer to irrigation drawings for additional specifications

PLANTING AND SOFTSCAPES:

Project:	Drawn:	Approved:	Key Plan:							
NOW CANADA - RICHTER ST	ММ	TL								-
				4	MM	Re-Issued for DP	27/03/2023			
Location:	Scale:			3	MM	Re-Issued for DP	28/02/2023			
				2	MM	Issued for Development Permit	02/12/2022			
2609 RICHTER ST	CONTRACTOR SHALL CHECK A	ALL DIMENSIONS ON THE WORK		1	MM	Issued for Review	29/11/2022			
KELOWNA, BC V1Y 2R3	BEFORE PROCEEDING. ALL DRA ARE THE EXCLUSIVE PROPERTY	AWINGS AND SPECIFICATIONS Y OF MK DESIGN GROUP.		No.	Ву	Description	Date: DD/MM/YY]
	REPRODUCTION OF ANY DOCUNOT PERMITTED WITHOUT WR	UMENTS OR DRAWINGS ARE RITTEN PERMISSION BY MK		REVIS	SIONS	5 TABLE FOR DRAWINGS		· · · · ·		
	DESIGN GROUP. DO NOT SCAL	LE DRAWINGS.								PR

installing paving products specified in landscape drawings

• .1 American Society for Testing and Materials International, (ASTM). • .1 ASTM A53/A53M_[02], Specification for Pipe, Steel, Black and Hot Dipped, Zinc Coated, Welded and Seamless. • .2 ASTM A121 [99], Specification for Zinc Coated (Galvanized) Steel

• .3 ASTM D5116_[97], Standard Guide For Small_Scale Environmental Chamber Determinations of Organic Emissions From Indoor

• .2 Canadian General Standards Board (CGSB).

• .1 CAN/CGSB_1.28_[98], Alkyd, Exterior House Paint.

• .2 CAN/CGSB_1.69_[98], Aluminum Paint.

• .3 CAN/CGSB_1.181_[99], Ready_Mixed Organic Zinc_Rich Coating. • .4 CAN/CGSB_1_GP_138M_[97], Paint Exterior Latex Type Flat.

• .3 Canadian Standards Association (CSA International). • .1 CAN/CSA-A23.1-[00]/A23.2-[F00], Concrete Materials and

Methods of Concrete Construction/Methods of Test for Concrete. • .2 CSA G42 [1964(R1998)], Galvanized (Zinc Coated) Steel Farm Field Wire Fencing.

• .3 CSA_080 Series_[97], Wood Preservation.

• .4 Environmental Choice Program (ECP).

• .1 CCD-047a-[98], Paints, Surface Coatings.

• .2 CCD-47b-[98], Stains, Surface Coatings.

.3 CCD-47c-[98], Varnishes, Surface Coatings.

• .4 CCD-048-[95], Surface Coatings -Recycled Water-Borne.

8.1 Irrigation work should be completed to comply with the Canadian Electrical Code and Canadian Plumbing Code

9.1 All landscape materials, planting and softscaping shall conform to standards defined under Division 32 and Canadian Landscape Standards, latest edition.

9.2 The contractor is responsible to have the landscape architect inspect the site for fine grading in areas where slopes, berms or mounds are used part of soft landscaping features prior to the installation of plant material. minimum 7 days notice is required for this review.

9.3 The contractor is responsible to have the landscape architect inspect the site for fine grading in areas where sod or seed are used as part of sof landscaping features prior to the installation of sod or seed. A minimum 7 business days notice is required for this review. Preparation of sod and seed areas shall conform to Canadian Landscape Standards. No 1 Turfgra and No. 1 Canadian seed standards apply as defined through Canadian landscape standards. Installation and maintenance specifications of sod and seed shall apply as defined through Canadian Landscape Standards.

9.4 Sodded areas as shown on the planting plan are to be certified Canad No. 1 Cultivated Turf Sod, with strong fibrous root system, thick and heav growth conforming to requirements of the Canadian Landscape Standard latest edition 'Level 1, well groomed'.

9.5 Areas to be sodded shall have a minimum of 150mm topsoil base.

9.6 Deliver sod to site within 24 hours of being lifted and lay within 36 hours of being lifted. During dry weather, protect sod from drying and water as necessary to prevent the loss of soil in handling. Dry sod is subje to rejection as per the project Landscape Architect.

9.7 Lay sod during growing season. Lay sod in rows, perpendicular to slop and with joints staggered. Butt sections closely without overlapping gaps. Gaps between sod strips and small sod strips to fill gaps are subject to rejection as per the project Landscape Architect and require rolling new s

9.8 Water sod immediately after laying to obtain moisture penetration inf top 150mm of topsoil. Maintain sodded areas from start of installation ur final acceptance.

9.9 Establishment maintenance must be completed by the landscape contractor through the course of construction/installation, substantial completion and until the time of final acceptance once all deficiencies are deemed as complete. Establishment maintenance practice and procedure are defined under the BC Landscape Standard, latest edition. This should compliant with "Level 1, well groomed landscapes".

9.10 Establishment watering must be completed by the landscape contractor through the course of construction/installation, substantial completion and until the time of final acceptance once all deficiencies are deemed as complete. Establishment watering practice and procedures are defined under the BC Landscape Standard, latest edition. This should be compliant with "Level 1, well groomed landscapes".

9.11 The landscape contractor should provide the landscape architect will one week's notice to perform a review at local nurseries who are supplying major plant orders to the site. The landscape architect reserves the right t reject plant material that does not meet drawing specification or BC Landscape Standards at any time, despite any review of said materials.

9.12 The landscape contractor must submit a soil report/test report to the shows that growing mediums comply with the standards identified in the Landscape Standard, latest edition for "Level 1, well groomed landscapes'

9.13 The general contractor shall pay for a minimum two (2) random tests will be performed during the course of construction to confirm that the growing medium being installed on site matches the test approved by the landscape architect. The landscape architect will notify the general contractor of when said tests will occur and soil samples should be mailed out within 48 hours of this notice. Failure to have soil match approved material could result in removal, amendment or reinstallation of appropria material at the contractor's expense. Soil tests should be sent to Pacific So Analysis Incorporated or approved equal testing center. Pacific Soil Analysis Inc.

Suite 5-11720 Voyageur Way, RICHMOND, BC V6X 3G9 Telephone 604 273 8226

9.14 Due to the nature of this project, Landscape mulch will not be used based on Fire Risk and CPTED safety principles. Additional growing material shall be used in lieu of Mulch.

OFESSIONAL STAMP/SEAL

l as . A	the contractor must submit, in writing, that the project architect has inspected planters or areas of soft landscape planting and has approved the waterproofing and slab protection present, such that it conforms to contract specifications and drawings. This shall be done prior to any inspections the landscape architect shall make to review growing medium depths or plant installation.
ft	9.16 Should any fertilizers or chemicals be applied to soft landscapes, they must be non-toxic.
ss,	9.17 It is expected that the contractor shall recycle waste materials and packaging in accordance with Waste Management and Disposal procedures defined under Division 1 of the master specification
nu -	
a vy	
ect	SCHEDULE C This forms part of application # DP22-0236
)е	Planner Initials AC AC EVEN DEVELOPMENT ELANNING
od.	
co itil	
s be	
2	
:h 1g to	
at BC	
5	
:	
ł	
ate oil	

9.15 In areas where soft landscaping shall be planted over structural slabs,

Drawing #:

LN-01

IRRIGATION LEGEND

	- RAIN BIRD XQF-75-18 HEADER	13m		RAIN BIRD XFSCV0912 SUBSURFACE DRIPLINE w/ 0.9gph EMITTERS SPACED @ 300mm, LATERALS SPACED @ 450mm, 100mm DEPTH	78m
	- 25mm CLASS 200 PVC LATERAL	38m		1 DRIPLINE LAYOUT IR2.0 RAIN BIRD XFSCV0912	
	- 25mm SCHEDULE 40 PVC MAINLINE	5m	*	2 AIR RELIEF VALVE IR2.0 RAIN BIRD ARV050	1
	50mm SCHEDULE 40 PVC SLEEVING	14m	FV	3 IR2.0 FLUSH VALVE ASSEMBLY	2
	25mm CSA APPROVED DB2 ELECTRICAL CONDUIT	3m		4 DRIP ZONE KIT IR2.0 RAIN BIRD XCZ-100-PRB-COM	1
	-ZONE NUMBER			5 ELECTRIC CONTROL VALVE IR2.0 RAIN BIRD 100-PEB	1
1 1" (-VALVE SIZE		\mathbf{M}	6 BLOW-OUT ASSEMBLY	1
	-ZONE FLOW		••	7 SPRAYHEAD SPRINKLER IR2.0 RAIN BIRD 1804-PRS w/ MPR NOZZLE	6
				8 IRRIGATION CONTROLLER IR2.0 RAIN BIRD ESPME3	1

DESCRIPTION

REVISIONS / ISSUED NO. DATE

PROJECT NOW WOMEN'S SHELTER, KELOWNA, BC MK DESIGN GROUP, KELOWNA, BC CONSULTANT

DESCRIPTION

IRRIGATION NOTES

- 1. ALL IRRIGATION PRODUCTS, MATERIALS AND CONSTRUCTION SHALL CONFORM TO SECTION 32 84 00 IRRIGATION SYSTEM SPECIFICATIONS, UNLESS OTHERWISE NOTED ON PLANS.
- 2. CONTRACTOR SHALL SLEEVE ALL IRRIGATION AND WIRES UNDER ALL WALKWAYS, DRIVEWAYS, ROCK WALLS AND RETAINING WALLS. WATER LINES AND WIRE SHALL NOT SHARE SAME SLEEVE. SLEEVE SIZING SHALL BE TWICE THE THE DIAMETER OF IRRIGATION PIPE.
- 3. THE CONTRACTOR SHALL VERIFY THE EXISTENCE AND LOCATION OF ALL UNDERGROUND UTILITIES AND SERVICES PRIOR TO CONSTRUCTION.
- 4. IRRIGATION PLANS ARE SCHEMATIC ONLY. ALL PLANT MATERIAL, LIGHT STANDARDS, HARD SURFACES OR AMENITIES TAKE PRECEDENCE OVER LOCATION OF IRRIGATION COMPONENTS.
- 5. CONTRACTOR TO CONFIRM 60psi @ 10gpm AVAILABLE AT SOURCE PRIOR TO INSTALLATION.
- 6. ALL ELECTRIC CONDUIT SHALL BE CSA NON-METALLIC DB2 PVC, GREY IN COLOUR.
- 7. INSTALL VALVES WITH MINIMUM 50mm CLEARANCE BETWEEN VALVE AND VALVE BOX, AND BETWEEN VALVE AND DRAIN ROCK.
- 8. WIRE SPLICES SHALL BE MADE w/ DRYCONN DBR/Y-600 OR 3M DBR/Y CONNECTORS & LOCATED AT ELECTRIC CONTROL ZONE VALVES.
- 9. INSTALL WIRE WITH MINIMUM 600mm LENGTH OF COILED SLACK AT ALL CHANGES OF DIRECTION, IN WIRE SPLICE BOXES AND AT CONNECTIONS TO CONTROLLED COMPONENTS.

- 10. SPRAYHEADS AND ROTORS SHALL BE ADJUSTED TO MINIMIZE OVERSPRAY ONTO ADJACENT SURFACES.
- 11. IF FIXED ARC NOZZLE DOES NOT FIT THE PRESCRIBED AREA, INSTALL RAIN BIRD HE-VAN AND ADJUST AS NECESSARY.
- 12. CONTRACTOR SHALL MONITOR CONTROLLER SETTINGS AND ADJUST REGULARLY TO ACCOUNT FOR SEASONAL WEATHER CHANGES TO ENSURE THAT PLANT WATER REQUIREMENTS ARE MET AND NOT EXCEEDED.
- 13. IDENTIFY ELECTRIC CONTROL VALVE WITH PERMANENT LABEL OR TAG INDICATING ZONE NUMBER OF VALVE.
- 14. CONTRACTOR SHALL CONFIRM LOCATION OF POINT OF CONNECTION AND CONTROLLER PRIOR TO INSTALLATION.
- 15. ALL WIRES SHALL BE 14 AWG DIRECT BURIAL WIRE. COMMON WIRE SHALL BE WHITE IN COLOUR, MASTER VALVE CONTROL WIRE SHALL BE RED IN COLOUR, CONTROL WIRES TO BE ORANGE, GREEN, YELLOW, BROWN OR BLACK IN COLOUR, SPARE WIRES TO BE BLUE IN COLOUR. COLOURS SHALL STAY CONSISTENT AND NOT CHANGE AT SPLICE.
- 16. CONTRACTOR SHALL ENSURE EACH DRIPLINE ZONE IS INSPECTED c/w COVERAGE TEST PRIOR TO BURIAL BY CONTRACT ADMINISTRATOR, IRRIGATION CONSULTANT, OR APPROVED PERSONNEL.
- 17. CONTRACTOR IS RESPONSIBLE TO CHECK AND CONFIRM ALL DIMENSIONS AND ELEVATIONS ON DRAWING.

		BASED ON PEAK DEMAND FOR MONTH OF								
			JULY (ET=0.23"/DAY)							
ZONE	LANDSCAPE	SPRINKLER MAKE & MODEL	VALVE SIZE	DESIGN FLOW (GPM)	DESIGN PRESSURE (PSI)	PRECIPITATION RATE (IN/HR)	SOIL TYPE	INTERVAL DAYS	CYCLES PER RUN TIME	RUN TIME (MIN)
1	TURF	RAIN BIRD 1804-PRS	25mm	2.1	30	1.69	CLAY LOAM	2	1	17
2	SHRUB	RAIN BIRD XFSCV0912	25mm	3.7	40	0.96	CLAY LOAM	2	1	20
							TOT	AL RUN TIM	E PER CYCLE:	20

WATER PLAN IT IRRIGATION LTD.

NORTH \frown

IRRIGATION SCHEDULE NOTE: IRRIGATION RUN TIMES ARE FOR ESTABLISHED PLANT MATERIAL ONLY.

IRRIGATION DESIGN CONSULTING PLANNING EFFICIENCY Kelowna BC t: 250.878.6178 www.waterplanit.ca

DESIGN BY DRAWN BY CHECKED BY PROJECT NO. SCALE

RH SHEET TITLE JG RH 22-085 SHEET NO. AS SHOWN

IRRIGATION PLAN

IR 1.0

83

ISSUED FOR DP

1 DEC 01/22 ISSUED FOR DP

3 MAR 29/23

NO. DATE

2 MAR 20/23 ISSUED FOR REVIEW

DESCRIPTION

NO. DATE

DESCRIPTION

NOW WOMEN'S SHELTER, KELOWNA, BC MK DESIGN GROUP, KELOWNA, BC CONSULTANT WATER PLAN IT IRRIGATION LTD.

-NDS PRO SERIES 910 VALVE BOX -AIR RELIEF VALVE RAIN BIRD ARV050 -MULCH OR GRAVEL VALVE HEIGHT INSERT FITTING IRRIGATION WIRING -NATIVE SOIL REDUCING BUSHING (IF REQ'D) -LATERAL PIPING

2 AIR RELIEF VALVE

DRIP ZONE KIT

HALF & SIZED TO VALVE (TYP.)

27.2cm 10.7" -STANDARD MODULE RAIN BIRD ESPM6 6-STATION MODULE RAIN BIRD ESPM6 6-STATION MODULE *| || ||*)| • ╞┿╋╢ B B INSIDE CONTROLLER CHASSIS STANDARD 120V RECEPTACLE

8 CONTROLLER IR2.0 N.T.S.

IN VALVE BOX, SIZED TO MAINLINE -SCHEDULE 80 NIPPLE CUT IN HALF -1419-12 NDS PRO SERIES VALVE BOX c/w OVERLAPPING LOCKING LID -25mm BLOW OUT ASSEMBLY c/w:

(1) 25mm TEE, SIZED TO MAINLINE (1) 25mm SCH 40 ST ELL (2) 25mm NIPPLE (1) 25mm BRASS BALL VALVE (1) 25mm CAP

-SCHEDULE 80 COUPLING w/ BUSHING

84

Consideration has been given to the following guidelines as identified in Chapter 18 of the City of Kelowna 2040 Official Community Plan:

	SECTION 2.0: GENERAL RESIDENTIAL AND MIX	KED US	SE				
RA	TE PROPOSALS COMPLIANCE TO PERTINENT GUIDELINE	N/A	1	2	3	4	5
	General residential & mixed use guidelines						
2.1	1 Palationshin to the Street		1	2	_		-
2.1	Orient primary building facades and entries to the fronting street		-	2	3	4	5
a.	or open space to create street edge definition and activity						\checkmark
h	On corner sites, orient building facades and entries to both						
0.	fronting streets.	\checkmark					
с.	Minimize the distance between the building and the sidewalk to						
	create street definition and a sense of enclosure.						\checkmark
d.	Locate and design windows, balconies, and street-level uses to						
	create active frontages and 'eyes on the street', with additional					\checkmark	
	glazing and articulation on primary building facades.					v	
e.	Ensure main building entries are clearly visible with direct sight						
	lines from the fronting street.						\checkmark
f.	Avoid blank, windowless walls along streets or other public open						
	spaces.					\checkmark	
g.	Avoid the use of roll down panels and/or window bars on retail and						
	commercial frontages that face streets or other public open	\checkmark					
	spaces.	-					
h.	In general, establish a street wall along public street frontages to						
	create a building height to street width ratio of 1:2, with a						
	minimum ratio of 1:3 and a maximum ration of 1:1.75.						
٠	Wider streets (e.g. transit corridors) can support greater street						
	wall heights compared to narrower streets (e.g. local streets);						1
٠	The street wall does not include upper storeys that are setback						\checkmark
	from the primary frontage; and						
٠	A 1:1 building height to street width ratio is appropriate for a lane						
	or mid-block connection condition provided the street wall height						
	is no greater than 3 storeys.						
2.1	2 Scale and Massing	N/A	1	2	3	4	5
a.	Provide a transition in building height from taller to shorter						
	buildings both within and adjacent to the site with consideration						\checkmark
	for future land use direction.						
b.	Break up the perceived mass of large buildings by incorporating					./	
	visual breaks in facades.					v	
С.	Step back the upper storeys of buildings and arrange the massing						
	and siting of buildings to:						
•	Minimize the shadowing on adjacent buildings as well as public						\checkmark
	and open spaces such as sidewalks, plazas, and courtyards; and						v
•	Allow for sunlight onto outdoor spaces of the majority of ground						
	floor units during the winter solstice.	<u> </u>			<u> </u>	<u> </u>	
		A	ATTA	CHN	1EN ⁻	ΓE	3
		T #	his form DP22-	s part of 0236	applica	tion	A STATE

City of 👹

Kelowna

Planner Initials AC

2.1	.3 Site Planning	N/A	1	2	3	4	5
a.	Site and design buildings to respond to unique site conditions and						
	opportunities, such as oddly shaped lots, location at prominent						
	intersections, framing of important open spaces, corner lots, sites					\checkmark	
	with buildings that terminate a street end view, and views of						
	natural features.						
b.	Use Crime Prevention through Environmental Design (CPTED)						
	principles to better ensure public safety through the use of						1
	appropriate lighting, visible entrances, opportunities for natural						V
	surveillance, and clear sight lines for pedestrians.						
с.	Limit the maximum grades on development sites to 30% (3:1)						\checkmark
d.	Design buildings for 'up-slope' and 'down-slope' conditions						
	relative to the street by using strategies such as:						
•	Stepping buildings along the slope, and locating building						
	entrances at each step and away from parking access where						
	possible;						
•	Incorporating terracing to create usable open spaces around the	1					
	building	V					
•	Using the slope for under-building parking and to screen service						
	and utility areas;						
•	Design buildings to access key views; and						
•	Minimizing large retaining walls (retaining walls higher than 1 m						
	should be stepped and landscaped).						
e.	Design internal circulation patterns (street, sidewalks, pathways)						
	to be integrated with and connected to the existing and planed						\checkmark
	future public street, bicycle, and/or pedestrian network.						
f.	Incorporate easy-to-maintain traffic calming features, such as on-						
	street parking bays and curb extensions, textured materials, and	\checkmark					
	crosswalks.						
g.	Apply universal accessibility principles to primary building entries,						
	sidewalks, plazas, mid-block connections, lanes, and courtyards						\checkmark
	through appropriate selection of materials, stairs, and ramps as						v
	necessary, and the provision of wayfinding and lighting elements.						
2.1	4 Site Servicing, Access, and Parking	N/A	1	2	3	4	5
a.	Locate off-street parking and other 'back-of-house' uses (such as						
	for a public view.						\checkmark
h	From public view.						
υ.	Ensure utility areas are clearly identified at the development						/
	permit stage and are located to not unnecessarily impact public of						\checkmark
	Common open spaces.						
С.	Avoid locating on-street parking between the front façade of a building and the fronting public streast						\checkmark
4	building and the monthling public street.						
u.	following ways, in order of proference.						/
	Inderground (where the high water table allows)						\checkmark
•	ondergroond (where the high water table allows)	L					
		AT	TAC	HME	NT	В]
		This f תח #	orms pa	art of app	olication		
		# DP	22-02	0	Cit	y of 🍳	
		Planne Initials	AC		K	elow	na

Planner Initials AC

•	Parking in a half-storey (where it is able to be accommodated to						
	not negatively impact the street frontage);						
•	Garages or at-grade parking integrated into the building (located						
	at the rear of the building); and						
•	Surface parking at the rear, with access from the lane or						
	secondary street wherever possible.						
e.	Design parking areas to maximize rainwater infiltration through						
	the use of permeable materials such as paving blocks, permeable					\checkmark	
	concrete, or driveway planting strips.					-	
f.	In cases where publicly visible parking is unavoidable, screen using						
	strategies such as:						
•	Landscaping;						
•	Trellises;	\checkmark					
•	Grillwork with climbing vines; or						
•	Other attractive screening with some visual permeability.						
q.	Provide bicycle parking at accessible locations on site, including:	1		1			
•	Covered short-term parking in highly visible locations. such as						
	near primary building entrances; and						\checkmark
•	Secure long-term parking within the building or vehicular parking						v
	area.						
h.	Provide clear lines of site at access points to parking, site						
	servicing, and utility areas to enable casual surveillance and safety.						\checkmark
i.	Consolidate driveway and laneway access points to minimize curb						
	cuts and impacts on the pedestrian realm or common open						\checkmark
	spaces.						•
j.	Minimize negative impacts of parking ramps and entrances						
	through treatments such as enclosure, screening, high quality						\checkmark
	finishes, sensitive lighting and landscaping.						•
2.1	.5 Streetscapes, Landscapes, and Public Realm Design	N/A	1	2	3	4	5
a.	Site buildings to protect mature trees, significant vegetation, and					/	
	ecological features.					\checkmark	
b.	Locate underground parkades, infrastructure, and other services	/					
	to maximize soil volumes for in-ground plantings.	\checkmark					
с.	Site trees, shrubs, and other landscaping appropriately to						/
	maintain sight lines and circulation.						\checkmark
d.	Design attractive, engaging, and functional on-site open spaces						
	with high quality, durable, and contemporary materials, colors,					\checkmark	
	lighting, furniture, and signage.					-	
e.	Ensure site planning and design achieves favourable microclimate						
	outcomes through strategies such as:						
•	Locating outdoor spaces where they will receive ample sunlight						
	throughout the year;					/	
•	Using materials and colors that minimize heat absorption;					\checkmark	
1	• •	1	1	1	1	1	
•	Planting both evergreen and deciduous trees to provide a balance						
•	Planting both evergreen and deciduous trees to provide a balance of shading in the summer and solar access in the winter; and						
•	Planting both evergreen and deciduous trees to provide a balance of shading in the summer and solar access in the winter; and Using building mass, trees and planting to buffer wind.						

6

City of Kelowna

This forms part of application

DP22-0236

Planner Initials AC

f	Use landscaping materials that soften development and enhance						
	the public realm						\checkmark
a	Plant native and/or drought tolerant trees and plants suitable for						
9.	the local climate.						\checkmark
h.	Select trees for long-term durability, climate and soil suitability.						
	and compatibility with the site's specific urban conditions.						\checkmark
i.	Design sites and landscapes to maintain the pre-development						
	flows through capture, infiltration, and filtration strategies, such						\checkmark
	as the use of rain gardens and permeable surfacing.						v
j.	Design sites to minimize water use for irrigation by using						
5	strategies such as:						
•	Designing planting areas and tree pits to passively capture					\checkmark	
	rainwater and stormwater run-off; and					•	
•	Using recycled water irrigation systems.						
k.	Create multi-functional landscape elements wherever possible,						
	such as planting areas that also capture and filter stormwater or				\checkmark		
	landscape features that users can interact with.				-		
Ι.	Select materials and furnishings that reduce maintenance						
	requirements and use materials and site furnishings that are						\checkmark
	sustainably sourced, re-purposed or 100% recycled.						
m.	Use exterior lighting to complement the building and landscape						
	design, while:						
•	Minimizing light trespass onto adjacent properties;					\checkmark	
•	Using full cut-off lighting fixtures to minimize light pollution; and						
•	Maintaining lighting levels necessary for safety and visibility.						
n.	Employ on-site wayfinding strategies that create attractive and						
	appropriate signage for pedestrians, cyclists, and motorists using	\checkmark					
	a 'family' of similar elements.						
2.1	.6 Building Articulation, Features and Materials	N/A	1	2	3	4	5
a.	Express a unified architectural concept that incorporates variation						
	In façade treatments. Strategies for achieving this include:						
•	Articulating facades by stepping back or extending forward a						
-	portion of the façade to create a series of intervals or breaks;						
•	Repeating window patterns on each step-back and extension interval;						\checkmark
•	Providing a porch, patio, or deck, covered entry, balcony and/or						
	bay window for each interval; and						
•	Changing the roof line by alternating dormers, stepped roofs,						
	gables, or other roof elements to reinforce each interval.						
b.	Incorporate a range of architectural features and details into						
	building facades to create visual interest, especially when						
	approached by pedestrians. Include architectural features such as:						
	bay windows and balconies; corner feature accents, such as turrets					\checkmark	
	or cupolas; variations in root height, shape and detailing; building						
1	entries; and canopies and overhangs.						

	Include architectural details such as: Masonry such as tiles, brick,				
	and stone; siding including score lines and varied materials to				
	distinguish between floors; articulation of columns and pilasters;				
	ornamental features and art work; architectural lighting; grills and				
	railings; substantial trim details and moldings / cornices; and				
	trellises, pergolas, and arbors.				
с.	Design buildings to ensure that adjacent residential properties				
	have sufficient visual privacy (e.g. by locating windows to			/	
	minimize overlook and direct sight lines into adjacent units), as			\checkmark	
	well as protection from light trespass and noise.				
d.	Design buildings such that their form and architectural character				/
	reflect the buildings internal function and use.				\checkmark
e.	Incorporate substantial, natural building materials such as				/
	masonry, stone, and wood into building facades.				\checkmark
f.	Provide weather protection such as awnings and canopies at				/
	primary building entries.				\checkmark
g.	Place weather protection to reflect the building's architecture.				\checkmark
h	Limit signage in number location, and size to reduce visual dutter				v
11.	and make individual signs assign to see				\checkmark
<u> </u>					•
1.	Provide visible signage identifying building addresses at all				\checkmark
	entrances.				v

	SECTION 4.0: LOW & MID-RISE RESIDENTIAL MIXED USE									
RA	TE PROPOSALS COMPLIANCE TO PERTINENT GUIDELINE	N/A	1	2	3	4	5			
(1 İ	s least complying & 5 is highly complying)									
4.1	Low & mid-rise residential & mixed use guidelines									
4.1	1 Relationship to the Street	N/A	1	2	3	4	5			
i.	Ensure lobbies and main building entries are clearly visible from						/			
	the fronting street.						\checkmark			
j.	Avoid blank walls at grade wherever possible by:									
•	Locating enclosed parking garages away from street frontages or									
	public open spaces;									
•	Using ground-oriented units or glazing to avoid creating dead									
	frontages; and					\checkmark				
•	When unavoidable, screen blank walls with landscaping or									
	incorporate a patio café or special materials to make them more									
	visually interesting.									
4.1	2 Scale and Massing	N/A	1	2	3	4	5			
a.	Residential building facades should have a maximum length of 60						/			
	m. A length of 40 m is preferred.						\checkmark			
b.	Residential buildings should have a maximum width of 24 m.						\checkmark			
с.	Buildings over 40 m in length should incorporate a significant	/								
	horizontal and vertical break in the façade.	\checkmark								

d.	For commercial facades, incorporate a significant break at	/					
	intervals of approximately 35 m.	\checkmark					
4.1	3 Site Servicing, Access, and Parking	N/A	1	2	3	4	5
a.	On sloping sites, floor levels should step to follow natural grade	1					
	and avoid the creation of blank walls.	V					
b.	Site buildings to be parallel to the street and to have a distinct						
	front-to-back orientation to public street and open spaces and to						
	rear yards, parking, and/or interior court yards:						
•	Building sides that interface with streets, mid-block connections						
	and other open spaces and should positively frame and activate						\checkmark
	streets and open spaces and support pedestrian activity; and						
•	Building sides that are located away from open spaces (building						
	backs) should be designed for private/shared outdoor spaces and						
	vehicle access.						
с.	Break up large buildings with mid-block connections which should						
	be publicly-accessible wherever possible.	\checkmark					
<u> </u>							
d.	Ground floors adjacent to mid-block connections should have	\checkmark					
	entrances and windows facing the mid-block connection.	•					
4.1	4 Site Servicing, Access and Parking	N/A	1	2	3	4	5
а.	venicular access should be from the lane. Where there is no lane,						
	and where the re-introduction of a lane is difficult or not possible,						
	access may be provided from the street, provided:						
•	Access is from a secondary street, where possible, or from the						\checkmark
	long face of the block;						
•	There is no receive there are such as the enderse are structure.						
•	I nere is no more than one curb cut per property.						
D.	Above grade structure parking should only be provided in						
	instances where the site of high water table does not allow for						
	other parking forms and should be screened from public view with						\checkmark
	active retail uses, active residential uses, architectural of						
~	Buildings with ground floor residential may integrate half storey						
С.	underground parking to a maximum of 1 a m above grade with						
	the following considerations:						
	Semi-private spaces should be located above to soften the edge						
•	and be at a comfortable distance from street activity: and					1	
	Where conditions such as the high water table do not allow for this					\checkmark	
•	condition up to 2 m is permitted provided that entryways stairs						
	landscaped terraces and natios are integrated and that blank						
	walls and barriers to accessibility are minimized						
6.1		N/A	1	2	2	4	5
a.	Integrate publicly accessible private spaces (e.g. private		-	-	5	7	5
	courtvards accessible and available to the public) with public open					\checkmark	
	areas to create seamless, contiguous spaces.					v	

b.	Locate semi-private open spaces to maximize sunlight						
	penetration, minimize noise disruptions, and minimize 'overlook'					\checkmark	
	from adjacent units.						
4.1	.6 Building Articulation, Features, and Materials	N/A	1	2	3	4	5
a.	Articulate building facades into intervals that are a maximum of 15						
	m wide for mixed-use buildings and 20 m wide for residential						
	buildings. Strategies for articulating buildings should consider the						
	potential impacts on energy performance and include:						
٠	Façade Modulation – stepping back or extending forward a						
	portion of the façade to create a series of intervals in the façade;						
٠	Repeating window pattern intervals that correspond to extensions						
	and step backs (articulation) in the building façade;						
٠	Providing a porch, patio, deck, or covered entry for each interval;						./
•	Providing a bay window or balcony for each interval, while						v
	balancing the significant potential for heat loss through thermal						
	bridge connections which could impact energy performance;						
•	Changing the root line by alternating dormers, stepped roots,						
	gables, or other roof elements to reinforce the modulation or						
	articulation interval;						
•	Changing the materials with the change in building plane; and						
•	Provide a lighting fixture, trellis, tree or other landscape feature						
h	Proof up the building mass by incorporating elements that define		-				
υ.	a building's base, middle and top						\checkmark
C	Use an integrated consistent range of materials and colors and						
с.	provide variety, by for example, using accent colors						\checkmark
h	Articulate the facade using design elements that are inherent to						
	the buildings as opposed to being decorative. For example, create						
	depth in building facades by recessing window frames or partially						\checkmark
	recessing balconies to allow shadows to add detail and variety as a						•
	byproduct of massing.						
e.	Incorporate distinct architectural treatments for corner sites and						
	highly visible buildings such as varying the roofline, articulating	1					
	the façade, adding pedestrian space, increasing the number and	\checkmark					
	size of windows, and adding awnings or canopies.						
f.	Provide weather protection (e.g. awnings, canopies, overhangs,						
	etc.) along all commercial streets and plazas with particular						
	attention to the following locations:						
•	Primary building entrances;,						
•	Adjacent to bus zones and street corners where people wait for						\checkmark
	traffic lights;						
•	Over store fronts and display windows; and						
•	Any other areas where significant waiting or browsing by people						
	OCCURS.						
g.	Architecturally-integrate awnings, canopies, and overhangs to the						/
	from which they are supported						\checkmark
1		1	1	1	1	1	

h.	Place and locate awnings and canopies to reflect the building's			/	
	architecture and fenestration pattern.			\checkmark	
i.	Place awnings and canopies to balance weather protection with				
	daylight penetration. Avoid continuous opaque canopies that run			\checkmark	
	the full length of facades.			-	
j.	Provide attractive signage on commercial buildings that identifies				
	uses and shops clearly but which is scaled to the pedestrian rather				
	than the motorist. Some exceptions can be made for buildings	\checkmark			
	located on highways and/or major arterials in alignment with the				
	City's Sign Bylaw.				
k.	Avoid the following types of signage:	\checkmark			
•	Internally lit plastic box signs;				
•	Pylon (stand alone) signs; and				
•	Rooftop signs.				
١.	Uniquely branded or colored signs are encouraged to help	\checkmark			
	establish a special character to different neighbourhoods.				

Proposal for Development Permit

2609-2611 Richter St

Introduction

This application is for a Development Permit to facilitate the construction of a unique, energy efficient building focused on offering a Women's shelter and supportive housing services.

Site Context and Land Use

The subject site consists of a single legal parcel, upon which exists a 1950's era building operated as a group home by the NOW Canada Society. The site is designated and zoned as Urban Centre (UC5) under both the OCP and Zoning bylaw. The neighboring property to the North consists of a Telus-owned industrial structure, and the property to the South is Ozanam House, a men's recovery facility.

Proposal Overview

The NOW Canada Society would like to undertake a Development Permit to construct a 5-storey building with an integrated continuum of care ranging from emergency shelter services into supportive housing. This is a BC Housing funded project that will provide shelter and below-market rental homes to women and children. To facilitate this outcome, the approval of a Form and Character Development Permit is required.

The structure has been designed with significant contemporary influence and hosts a very modern appearance with a mix of high-quality cladding materials. The building steps back on both side yards above 2 storeys to reduce the massing impact on neighboring properties. Parking is accessed from the rear lane and constitutes most of the 1st floor due to high water table conditions. Pedestrian access comes via the Richter St frontage. Shelter services constitute the 2nd floor level, with supportive housing on floors 3-5.

Landscaping along the Richter frontage is robust, and fully meets the requirements in S7.2 of the zoning bylaw with provision of two street-interfacing trees within a 3m landscape buffer. A 1.8m solid screen vinyl

fence will serve as an attractive buffer along the North property line, and the southern portion of the property line alongside the parking stall.

Conclusion

The project provides homes for a vulnerable segment of the population who need safe, affordable housing in the downtown core. Focusing this type of gentle medium density, within an Urban Centre, locates more residents within walking/biking distance of jobs, shopping, and services. Furthermore, this project is offered on an already zoned site, with no proposed variances. The applicant kindly requests support from staff and council on this application.

DP22-0236 2609-2611 Richter Street

Development Permit

City of

Kelowna

Purpose

To issue a Development Permit for the form and character of a 5-storey building offering a women's shelter and supportive housing services.

Development Process

Context Map

Birch / ve

Transit

ude

xby

land

Transit Score

Very Walkable

accomplished on foot.

A few nearby public

Birch Ave

Subject Property Map

Subject Property Map

Subject Property Map

City of Kelowna

Technical Details

Women's Shelter and Supportive Housing

- 10 unit shelter on floor 2
- 24 unit supportive housing on floor 3 to 5
- 20 Parking Stalls
- 14 Bicycle Parking Stalls

Site Plan & Landscape Plan

Site Plan Overview - 1:100

Level 1 and Parkade

Springfield Rd

Floors Two & Three Plans

Floors Four, Five, & Roof Plans

Materials Board

LUX ALUMINUM WOOD GRAIN VERTICAL (#1)

FIBER CEMENT PANEL - GREY (#3)

FIBER CEMENT PANEL - WHITE (#2)

BRICK VENEER - GREY (#8)

FIBER CEMENT PANEL - BLUE (#4)

CONCRETE WALL / COLUMN (#8 & #9)

FIBER CEMENT PANEL - BLACK (#6)

GLASS RAILING (#10)

SAMPLE FOR COLOUR PURPOSES ONLY

Elevation – West and East

West

Elevation – North

Elevation – South

Rendering – NE

VIEW LOOKING NORTH EAST - FRONT ELEVATION

Rendering – SE

VIEW LOOKING SOUTH EAST - FRONT ELEVATION

Rendering – NW

Rendering – NW

OCP Policies & Design Guidelines

- Diverse Housing Form
- Diverse Housing Tenure
- Housing with Supports
- Appropriate height and scale
 - Within OCP Building Height Map
- Appropriate Form and Function
 - Within Residential Character as stated by OCP Retail Street Map

Staff Recommendation

- Staff recommend support for the proposed Development Permit as it:
 - Aligns with OCP Chapter 5 Policies
 - Meets majority of OCP Design Guidelines
 - No Variances

cil

Report to Council

Date:	April 24, 2023
То:	Council
From:	City Manager
Subject:	2023 Financial Plan – Final Budget Volume
Department:	Financial Planning

Recommendation:

THAT Council adopts the 2023-2027 Financial Plan;

AND THAT Council approves the formulation of 2023 Property Tax Rates that will raise the required funds in 2023, from General Taxation, in the amount of \$176,624,339 resulting in an average net property owner impact of 3.78 per cent;

AND THAT Bylaw No. 12502 being the 2023-2027 Five-Year Financial Plan, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12503 being the Tax Structure Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12504 being the Annual Tax Rates Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12505 being the DCC Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12508 being the Septic Removal Specified Area Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration;

AND FUTHER THAT Bylaw No. 12506 being the Sale of City Owned Land Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration.

Purpose:

To present the 2023 Final Budget Volume submissions, the 2023-2027 Financial Plan and related bylaws to Council for their consideration and approval.

Background:

Council approved the 2023 Financial Plan – Preliminary volume on December 8, 2022 and the addition of the 2023 Financial Plan – Carryover Budget volume on March 20, 2023. The 2023 Financial Plan - Final Budget volume includes emergent, legislated or Council directed requests. The three volumes provide the 2023 portion of the 2023-2027 Five Year Financial Plan. Depending on the nature of the item being considered within Final Budget, the adjustments could cause the final tax demand to increase or decrease.

The City of Kelowna's strong financial management and clear budgeting practices continue to allow the delivery of essential services residents expect while maintaining, expanding, and building infrastructure that makes Kelowna a great place to live. The 2023 Final Budget as proposed, reflects a net municipal property tax increase of 3.78 per cent, a 0.2 per cent decrease to the Preliminary Budget tax requirement approved in December 2022, of 3.80 per cent.

The largest Final Budget request affecting taxation can be attributed to the H2O facility air handling renewal request which is offset by an increase in new construction revenue and the FortisBC franchise fee revenue. Information about the requested changes are included in the attached 2023 Final Budget Volume.

A tax rate of 3.78 per cent means the owner of a residential property with an average assessed value of \$1,009,350 will pay \$2,373 which is an increase of \$87 from the prior year for the municipal portion of their property taxes.

Considerations applicable to this report:

Legal/Statutory Authority:

In Section 165 of the Community Charter regarding Financial Plans, adoption of a 5 Year Financial Plan bylaw is required prior to the annual property tax bylaw. Under the Annual Property Tax Bylaw Section 197 of the Community Charter, Council must establish tax rates by bylaw after adoption of the financial plan but before May 15th.

Considerations not applicable to this report: Legal/Statutory Procedural Requirements: Existing Policy: Financial/Budgetary Considerations: External Agency/Public Comments: Communications Comments:

Submitted by: M. Antunes, CPA Financial Planning Manager

Approved for inclusion:

J. Sass, CA, CPA Director of Financial Services

Attachment:

- 1: 2023 Financial Plan Final Budget Volume
- 2. 2023-2027 Five-Year Financial Plan
- 3: 2023 Financial Plan Presentation

FINANCIAL PLAN

Kelowna, BC Canada Final Budget - Volume 3

Report to Council

Date: April 24, 2023

To: Council

From: City Manager

Subject: 2023 Financial Plan – Final Budget Volume

Department: Financial Planning

Recommendation:

THAT COUNCIL adopts the 2023-2027 Financial Plan;

AND THAT Council approves the formulation of 2023 Property Tax Rates that will raise the required funds in 2023, from General Taxation, in the amount of \$176,624,339 resulting in an average net property owner impact of 3.78 per cent;

AND THAT Bylaw No. 12502 being the 2023-2027 Five-Year Financial Plan, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12503 being the Tax Structure Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12504 being the Annual Tax Rates Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12505 being the DCC Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration;

AND THAT Bylaw No. 12508 being the Septic Removal Specified Area Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration;

AND FUTHER THAT Bylaw No. 12506 being the Sale of City Owned Land Reserve Fund Expenditure Bylaw, 2023 be advanced for reading consideration.

Purpose:

To present the 2023 Final Budget Volume submissions, the 2023-2027 Financial Plan and related bylaws to Council for their consideration and approval.

Background:

Council approved the 2023 Financial Plan – Preliminary volume on December 8, 2022 and the addition of the 2023 Financial Plan – Carryover Budget volume on March 20, 2023. The 2023 Financial Plan - Final Budget volume includes emergent, legislated or Council directed requests. The three volumes

provide the 2023 portion of the 2023-2027 Five Year Financial Plan. Depending on the nature of the item being considered within Final Budget, the adjustments could cause the final tax demand to increase or decrease.

The City of Kelowna's strong financial management and clear budgeting practices continue to allow the delivery of essential services residents expect while maintaining, expanding, and building infrastructure that makes Kelowna a great place to live. The 2023 Final Budget as proposed, reflects a net municipal property tax increase of 3.78 per cent, a 0.2 per cent decrease to the Preliminary Budget tax requirement approved in December 2022, of 3.80 per cent.

The largest Final Budget request affecting taxation can be attributed to the H2O facility air handling renewal request which is offset by an increase in new construction revenue and the FortisBC franchise fee revenue. Information about the requested changes are included in the attached 2023 Final Budget Volume.

A tax rate of 3.78 per cent means the owner of a residential property with an average assessed value of \$1,009,350 will pay \$2,373 which is an increase of \$87 from the prior year for the municipal portion of their property taxes.

Considerations applicable to this report: *Legal/Statutory Authority:*

In Section 165 of the Community Charter regarding Financial Plans, adoption of a 5 Year Financial Plan bylaw is required prior to the annual property tax bylaw. Under the Annual Property Tax Bylaw Section 197 of the Community Charter, Council must establish tax rates by bylaw after adoption of the financial plan but before May 15th.

Considerations not applicable to this report: Legal/Statutory Procedural Requirements: Existing Policy: Financial/Budgetary Considerations: External Agency/Public Comments: Communications Comments:

Submitted by:

M. Antunes, CPA Financial Planning Manager

Approved for inclusion: J. Sass, CA, CPA Director of Financial Services

Attachment:

- 1: 2023 Financial Plan Final Budget Volume
- 2. 2023-2027 Five-Year Financial Plan
- 3: 2023 Financial Plan Presentation

FINANCIAL SUMMARIES

The 2023 Final Budget Volume includes requests that are emergent, required by legislation or have been directed by City Council. This volume is consolidated with the first two volumes, 2023 Preliminary Volume and the 2023 Carryover Volume, to create the 2023 Financial Plan and the 2023-2027 Five-Year Financial Plan.

The 2023 Financial Plan results in a Final Tax Demand of \$176.6M. This represents an increase of \$1.5M relative to the 2023 Preliminary Financial Plan, and an increase of \$1.5M of taxation revenue from new construction.

The impact to the average property owner is 3.78 per cent.

FINAL BUDGET SUMMARIES

Analysis of tax demand (\$ thousands)

The 2022 final tax demand was \$167.1M and had a 3.94 per cent net property owner impact. The final 2023 gross department operating expenditures have increased by 2.40 per cent over 2022 and net department revenues by decreased by 2.19 per cent. The net general debt decreased by 32.41 per cent while capital expenditures from general taxation increased by 10.51 per cent and general revenue increased by 28.45 per cent for a total gross tax demand increase of \$9.5M.

	2022	2023	Change	% change
Gross departmental operating expenditures	298,253	305,416	7,163	2.40%
Net departmental revenue	(136,935)	(133,942)	2,993	(2.19)%
Net departmental operating expenditure	161,318	171,474	10,156	6.30%
Net general debt	4,305	5,701	1,395	32.41%
Capital expenditures from general taxation	13,693	15,132	1,439	10.51%
General revenue	(12,209)	(15,683)	(3,473)	28.45%
Gross tax demand	167,107	176,624	9,517	5.70%
Less estimated new construction revenue	(3,160)	(3,200)		
Net property owner impact	3.94%	3.78%		(0.16%)

General Fund tax demand (\$ thousands)

The tax demand established at Preliminary Budget was \$175.1M. The estimated new construction revenue was \$1.7M, based on BC Assessment preliminary roll information, resulting in a 3.80 per cent net property owner impact.

Final Budget requests for net general fund operating and capital expenditures of \$1.5M have held the total tax demand to \$176.6M. Final new construction revenues, based on the revised assessment roll, increased by \$1.5M to \$3.2M, reducing the net property owner impact to 3.78 per cent.

Preliminary Budget Tax Demand			175,126
General Revenues	(397)		
Operating Requests	765	368	
Capital Project Requests	_	1,130	
Total Final Budget Additions			1,498
Final Gross Tax Demand			176,624
Less new construction revenue			(3,200)
Final Net Tax Demand			173,424
Net Property Owner Impact			
Preliminary Budget		3.80%	
Financial Plan - Final Budget			3.78%

Note: Totals may not add due to rounding

Airport and Utility Funds – Final Budget (\$ thousands)

Final Budget requests for the Water utility totals \$300k funded from water reserves.

Final Budget Submissions			
Revenue	0		
Operating Requests	0	0	
Capital Project Requests		300	
Total Final Budget Additions			300

Analysis of total revenues

The total revenue budget is \$780.2M with \$412.9M from operating sources and \$367.2M from capital sources.

The tables below summarize the total operating and capital revenue by fund, including the prior year's carryover amounts, and the same revenue information by revenue source.

Note: Totals may not add due to rounding

Analysis of total expenditures

The total expenditure budget requirement is \$780.2M with \$412.9M for operating needs and \$367.2M for the 2023 capital program.

The tables below summarize the total operating and capital expenditures by fund, including the prior year's carryover amounts, and the same total operating and capital expenditure information by expenditure type.

Note: Totals may not add due to rounding

Use of tax dollar by service area

The table below highlights the cost by service area and the resulting total municipal taxes for the average residential property in Kelowna for 2023. Note the municipal portion of taxes does not include amounts collected on behalf of other taxing authorities or applicable business improvement areas such as: Regional District of Central Okanagan, BC Assessment, Okanagan Regional Library, Minister of Finance – School Tax, Downtown Kelowna Business Improvement Area or Uptown Rutland Business Improvement Area. The average assessed value of a residential property is \$1,009,350 in 2023, as obtained from BC Assessment. The service area with the highest cost is Community Safety, including RCMP, at 34 per cent, followed by the Parks Services at 14 per cent and Fire Department at 13 per cent.

Service area	\$ Cost	2023 %	2022 %
Community Safety	803.11	34	35
Fire Department	322.14	13	13
Infrastructure			
Street Lights	28.47	1	1
Parks Services	331.32	14	13
Transportation Services	229.03	10	11
Utility Services	55.51	2	2
Planning & Development	237.83	10	10
Active Living & Culture Services	113.14	5	5
Regional Programs	10.76	1	1
Public Transit	111.91	5	4
Debt	80.36	3	3
Grants or transfers to external organizations/individuals	49.21	2	2
Total Municipal portion of taxes	\$ 2,372.80	100%	100%

Based on the 2023 average residential property assessed property value of \$1,009,350 Note: Totals may not add due to rounding

Ongoing budget impacts

Below is a projection of the next five years net property owner impacts using the best information available at the time of preparation for the Final Budget volume. As with any planning exercise, the level of certainty and detail is most appropriately found in the current year. For the years after 2023, budgets have been adjusted for current one-time projects, changes in operating budgets from previously approved requests, new capital projects included in the Council endorsed 10-Year Capital Plan, 2022-2031 (10YCP), growth and/or inflationary rates, and other key assumptions. Although this forward looking information is based on what is believed to be reasonable assumptions, there can be no assurance that this information will prove to be accurate as actual results and future events could differ materially from the anticipated information contained in this forecast.

Specific assumptions in the preparation of the years 2024-2027 included in the forecasted increases below:

- Growth rates of 1.59 per cent for 2024 to 2026, 1.47 per cent in 2027.
- Inflation rates of 2 per cent for most operating expenses and certain revenues, rate increase to 4 per cent in 2024 for materials expense.
- Debt impacts have been split over the expected construction years to match required cash flow and to spread the debt repayment impacts. Included in the plan with significant impacts, are the Parkinson Recreation Centre and the Capital New Centre Expansion projects along with anticipated alternate funding sources.

	2023	2024	2025	2026	2027
General revenues	(15,683)	(16,023)	(16,371)	(16,735)	(17,089)
Net operating budget	177,175	188,047	199,214	211,274	222,421
Pay-as-you-go capital	15,132	16,255	17,453	18,727	19,981
Taxation demand	176,624	188,279	200,296	213,266	225,313
New construction tax revenue	(3,200)	(2,808)	(2,994)	(3,185)	(3,135)
Net property owner impact	3.78%	5.01%	4.79%	4.89%	4.18%

Additional details on all assumptions are provided in the Five-Year Financial Plan (2023-2027).

Financial Plan 2023 - 2027

The table below outlines the City's Five-Year forecast for all funds revenues and expenditures for 2023-2027. The years 2028-2030 are included in summary to match the term of the 20-Year Servicing Plan. For detailed divisional information see the Five-Year Financial Plan section of the 2023 Financial Plan.

	2023	2024	2025	2026	2027	2028-2030
Revenue						
Property Value Tax	176,624,339	188,279,055	200,295,838	213,266,188	225,313,048	723,943,923
Library Requisition	7,325,200	7,471,704	7,621,138	7,773,561	7,929,032	24,751,330
Parcel Taxes	3,433,673	3,386,926	3,226,092	2,878,729	2,643,767	7,706,257
Fees and Charges	166,752,954	168,998,093	176,296,845	181,604,696	185,477,990	607,768,371
Borrowing Proceeds	8,507,400	161,039,504	50,989,600	0	0	6,321,200
Other Sources	90,079,744	64,924,162	68,236,877	65,808,081	64,104,429	192,860,588
	452,723,310	594,099,445	506,666,391	471,331,255	485,468,266	1,563,351,669
Transfer between Funds						
Reserve Funds	2,399,489	1,803,987	4,018,987	5,018,987	5,018,987	4,271,961
DCC Funds	55,191,710	27,879,895	45,071,243	42,110,785	72,931,463	131,287,135
Surplus/Reserve Accounts	269,856,570	73,537,991	74,663,418	52,310,615	67,176,349	243,984,608
	327,447,769	103,221,873	123,753,649	99,440,388	145,126,799	379,543,705
Total Revenues	780,171,079	697,321,318	630,420,039	570,771,643	630,595,065	1,942,895,374
Expenditures						
Municipal Debt						
Debt Interest	3,980,837	5,854,736	10,057,004	13,579,814	15,783,808	46,825,315
Debt Principal	6,918,584	7,140,895	9,295,237	13,569,554	14,561,097	43,009,316
Capital Expenditures	367,208,100	288,733,676	204,324,905	129,728,128	173,098,283	427,984,615
Other Municipal Purposes						
General Government Planning, Development &	38,935,773	44,982,463	47,990,399	51,232,650	54,614,371	185,472,621
Building Services	35,969,865	29,502,083	29,279,911	30,240,946	31,205,486	99,725,484
Community Services	102,941,048	105,058,206	108,811,337	112,228,174	115,657,991	368,692,809
Protective Services	94,492,441	88,067,171	91,149,022	94,369,042	97,594,381	313,263,910
Utilities	27,894,607	26,681,298	27,473,602	28,278,225	28,981,397	92,258,679
Airport	22,666,780	23,045,145	24,379,339	26,662,772	27,403,596	86,108,813
· · ·	701,008,035	619,065,673	552,760,756	499,889,305	558,900,411	1,663,341,561
Transfers between Funds						
Reserve Funds	31,694,307	31,556,581	32,324,994	32,376,236	32,439,085	97,164,211
DCC Funds	0	0	0	0	0	0
Surplus/Reserve Accounts	47,468,737	46,699,064	45,334,289	38,506,102	39,255,570	182,389,601
	79,163,044	78,255,645	77,659,283	70,882,338	71,694,655	279,553,812
Total Expenditures	780,171,079	697,321,31 <u>8</u>	630,420,039	570,771,643	630,595,065	1,942,895,374

OPERATING BUDGET

2023 FINANCIAL PLAN 2023 Operating Requests Final Budget

Page	e Description	Cost	Reserve	Borrow	Grant/Other	Revenue	Utility	Taxation Cat
City	Administration							
New	,							
549	Council Initiatives	500,000	0	0	0	0	0	(500,000) OG
	Total New	500,000	0	0	0	0	0	(500,000)
	Division Priority 1 Total	500,000	0	0	0	0	0	(500,000)
Infr	astructure Division							
Grov	wth							
550 Clea	* Downtown On Call and In Team Support Increase	24,000	0	0	0	0	0	(24,000) OG
erea.	Total Growth	24,000	0	0	0	0	0	(24,000)
	Division Priority 1 Total	24,000	0	0	0	0	0	(24,000)
<i>Corj</i> Mair	porate Services ntain	4/4 000						(1/1 000) 00
549	Insurance Premiums - Inflationary	161,000	0	0	0	0	0	(161,000) OG
	Total Maintain	161,000	0	0	0	0	0	(161,000)
Grov	wth							
550	Downtown On Call and Clean	30,000	0	0	0	0	0	(30,000) OG
550	Extreme Weather Response	30,000	(30,000)	0	0	0	0	0 OG
551	Security Services Enhancement - Additional Guard	50,000	0	0	0	0	0	(50,000) OG
	Total Growth	110,000	(30,000)	0	0	0	0	(80,000)
	Division Priority 1 Total	271,000	(30,000)	0	0	0	0	(241,000)
Fina Deb Mair	ancial Services Division of & Other ntain							
551	Transmission of Taxes - BIA's and Other Governments	133,554,000	0	0	0	(133,554,000)	0	0 OT
	Total Maintain	133,554,000	0	0	0	(133,554,000)	0	0

2023 FINAN Page	NCIAL PLAN Description	Cost	Reserve	Borrow	Grant/Other	Revenue	Utility	CITY OF KELOWNA Taxation Cat
	Division Priority 1 Total	133,554,000	0	0	0	(133,554,000)	0	0
Finan	ncial Services Division							
Rever	nue & Fees							
Mainta	ain							
552	FortisBC Operating Fee	0	0	0	0	(396,800)	0	396,800 OG
	Total Maintain	0	0	0	0	(396,800)	0	396,800
	Division Priority 1 Total	0	0	0	0	(396,800)	0	396,800
	Total Priority 1 Operating	134,349,000	(30,000)	0	0	(133,950,800)	0	(368,200)

Division:	City Manager	Priority: 1 N	lew
Department:	Council	ON-GOII	NG
Title:	Council Initiatives	FIN	JAL

Justification:

Kelowna City Council is committed to working closely with residents, community partners and other levels of government to bring positive change. Council priorities and results identify where residents and City Council want to make a difference. Budget is requested for City Council to provide funding to promote and finance various initiatives that will contribute to this change.

Strategic Di	rection:	Other - Coun	cil Resolution					
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation
2023	500,000	0	0	0	0	0	0	(500,000)
2024	500,000	0	0	0	0	0	0	(500,000)
2025	500,000	0	0	0	0	0	0	(500,000)
Division:	Corpo	rate & Protect	ive Services			Priority	: 1	Maintain
Department: Risk Management							ON-GOING	
Title:	Insura	nce Premiums	- Inflationary I	ncrease				FINAL

Justification:

Budget is requested to cover inflationary increases in insurance premiums. Inflation on insurance premium rates in 2023 has been significant worldwide. Property insurance costs in particular increased as a result of higher building replacement costs due to inflation of materials and labour. The City of Kelowna insures \$1.1B of built infrastructure with coverage including liability, property, cybercrime and environmental impairment.

2023 Base budget: \$1.55M

Strategic D	Direction:	Financial mai	nagement - Cos	t to deliver ser	vices is quant	ified		
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation
2023	161,000	0	0	0	0	0	0	(161,000)
2024	161,000	0	0	0	0	0	0	(161,000)
2025	161,000	0	0	0	0	0	0	(161,000)

Expected Completion: Dec 2023

Division:	Corporate & Protective Services	Priority: 1	Growth
Department:	Risk Management		ON-GOING
Title:	Downtown On Call and Clean Team Support Increase		FINAL

Justification:

The City of Kelowna works in collaboration with the Downtown Kelowna Business Association to maintain a safe and inviting environment in the downtown core. Since 2019, the City has financially supported the Downtown On Call (DOC) and Downtown Clean Team (DCT). Budget is requested to increase the support for these important teams to allow them to address an increasing demand for service.

2023 Base budget: \$106k

Strategic Direction:		Community S	Community Safety - Residents feel safe							
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation		
2023	54,000	0	0	0	0	0	0	(54,000)		
2024	54,000	0	0	0	0	0	0	(54,000)		
2025	54,000	0	0	0	0	0	0	(54,000)		
Division:	Corpo	rate & Protect	ve Services			Priority	: 1	Growth		
Department:	Risk M	lanagement		(ON-GOING					
Title:	Extrer	Extreme Weather Response Program Funding						FINAL		

Justification:

Budget is requested for the City of Kelowna to support vulnerable people throughout the community during extreme hot and cold weather events, for which there is no formal program or funding currently in place. These activities are separate from actions taken by the Regional Emergency Program. In 2022, the Province formally asked all local governments in BC to work with community partners to have a community plan for heat domes and freezing cold conditions. Staff will monitor for grants and other funding sources as they become available to offset or supplement this funding.

Strategic Direction:		Community S	Community Safety - Residents feel safe								
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation			
2023	30,000	(30,000)	0	0	0	0	0	0			
2024	30,000	0	0	0	0	0	0	(30,000)			
2025	30,000	0	0	0	0	0	0	(30,000)			

Division: Department:	Corporate & Protective Services Risk Management	Priority: 1	Growth
Title:	Security Services Enhancement - Additional Guard		FINAL

Justification:

Budget is requested for an additional seasonal security guard to support downtown from April through September. More support is needed to address growing security concerns during the early morning hours. Additional security presence at these times will reduce vandalism and misuse of washrooms amenities as well as improve asset protection.

2023 Base budget: \$1.02M

Strategic Direction:		Other - Suppo	orts Base Busin	ess				
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation
2023	50,000	0	0	0	0	0	0	(50,000)
2024	50,000	0	0	0	0	0	0	(50,000)
2025	50,000	0	0	0	0	0	0	(50,000)
Division: Financial Services						Priority	: 1	Maintain
Department:	Department: Financial Services							ONE-TIME
Title:	Transı	Transmission of Taxes - BIA's and Other Governments						FINAL

Justification:

To establish the receipt and disbursement of taxes to Business Improvement Areas (BIA) and other governments: Regional District of Central Okanagan (RDCO) (\$14,816,900); RDCO SIR Land Levy (\$763,200); RDCO SIR Parcel Tax (\$275,000); BC Assessment Authority (\$2,759,700); School Tax (\$87,498,800); Additional School Tax (\$4,074,800); Kelowna Downtown BIA (\$1,149,000); Uptown Rutland BIA (\$222,500); Regional Hospital (\$14,668,900); and Okanagan Regional Library (\$7,325,200). The total amount to be collected for all other taxing authorities is \$133,554,000.

Strategic I	Direction:	Financial mai	nagement - Cos	st to deliver serv	ices is quar	ntified		
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation
2023	133,554,0 00	0	0	0	0	(133,554,00 0)	0	0

Division:	Financial Services	Priority: 1	Maintain
Department:	Financial Services		ON-GOING
Title:	FortisBC Operating Fee		FINAL

Justification:

This request is to adjust the franchise fee revenue due from FortisBC up to \$2,157,365 from the 2023 Preliminary budget amount of \$1,760,540. The fee is based on 3 per cent of the gross revenue for the provision and distribution of all gas consumed within the City of Kelowna during the 2022 calendar year.

Strategic Direction:		Financial mar	Financial management - Non-tax revenues are increasing							
	Cost	Reserve	Borrow	Grant	Other	Revenue	Utility	Taxation		
2023	0	0	0	0	0	(396,800)	0	396,800		
2024	0	0	0	0	0	(396,800)	0	396,800		
2025	0	0	0	0	0	(396,800)	0	396,800		

CAPITAL BUDGET

-

City of Kelowna

HV

1 the an

3,0

^{2023 FINANCIAL PLAN} 2023 Capital Requests Final Budget Summary - General Fund

Page	е Туре	Description	Asset Cost	Reserve	Borrow	Grant	Other	Utility	Taxation
Bui	Iding C	apital - Priority 1							
556	Renew	H20 Facility Air Handling Renewal	2,500,000	(1,500,000)	0	0	0	0	(1,000,000)
		B1 - Parks and Recreation Buildings	2,500,000	(1,500,000)	0	0	0	0	(1,000,000)
556	Renew	General Building Infrastructure Renewal	1,050,000	(1,050,000)	0	0	0	0	0
	E	- 32 - Community and Cultural Buildings	1,050,000	(1,050,000)	0	0	0	0	0
557	Renew	City Hall - Level 1 Meeting Room Suite	135,000	(135,000)	0	0	0	0	0
		B3 - Civic/Protective Service Buildings	135,000	(135,000)	0	0	0	0	0
557	Renew	City Yards - Female Changeroom Upgrades	130,000	0	0	0	0	0	(130,000)
E	34 - Tran	sportation and Public Works Buildings	130,000	0	0	0	0	0	(130,000)
		Cost Center Totals	3,815,000	(2,685,000)	0	0	0	0	(1,130,000)
Par	ks Capi	tal - Priority 1							
558	Renew	City Park - Rose Garden Improvements	220,000	(220,000)	0	0	0	0	0
		- P6 - City-wide Park Development	220,000	(220,000)	0	0	0	0	0
558	Growth	- Mission Recreation Park - Modular park washroom unit	162,000	(162,000)	0	0	0	0	0
		- P8 - Renewal, Rehabilitation & Infra	162,000	(162,000)	0	0	0	0	0
		Cost Center Totals	382,000	(382,000)	0	0	0	0	0
		Grand Total	4,197,000	(3,067,000)	0	0	0	0	(1,130,000)

2023 Capital Request Details

Department:	Capital Projects	Priority: 1	Renew
Cost Center:	Building Capital	10 Yr Cap Plan Ref: Not include	d B1
Title:	H20 Facility Air Handling Renewal		FINAL

Justification:

Air Handling units at the H2O Adventure & Fitness Centre are approaching the end of their useful life. Immediate service work and replacement is recommended to ensure building operations are not impacted. In consideration of supply chain issues, final work is anticipated into Q2, 2024.

Strategic Direction: Other - Extraordinary or Unforeseen Obligation

Operating Impact: There are no operation and maintenance budget impacts associated with this request

Asset Cos	st Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
2,500,00	0 (1,500,000)	0	0	0	0	(1,000,000)	
Department: Cost Center:	Capital Projects Building Capital				Priority: 1 10 Yr Cap Plan	Ref: Not includec	Renew I B2
Title:	General Building	Infrastructi	ure Renewal				FINAL

Justification:

Budget is requested for general building infrastructure renewal that includes additional budget for the City Hall mechanical upgrade due to equipment cost escalations, and for the modernization of the elevator at the Parkinson Activity Centre. The elevator has had recent frequent maintenance concerns and outages. Contractor investigation identified critical parts are now obsolete requiring modernization to ensure accessibility.

Expected Comple	etion: Dec 2023						
Strategic Direction	on: Other - Exti	raordinary or l	Jnforeseen Ob	oligation			
Operating Impac	t: There are no o	operation and	maintenance	budget impacts a	ssociated with	this request	
Asset Cost	Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
1,050,000	(1,050,000)	0	0	0	0	0	

2023 Capital Request Details

Department:	Capital Projects	Priority: 1	Renew
Cost Center:	Building Capital	10 Yr Cap Plan Ref: 2021 B3	- \$4.685M
Title:	City Hall - Level 1 Meeting Room Suite		FINAL

Justification:

The meeting room suite of 4,200sqft on Level 1 of City Hall is complete and will be open shortly for use for City business as well as available for community bookings after hours. In the spirit of reconciliation and recognizing the living history of our region, the rooms are proposed to be given First Nations names, with artwork and decor to honour these names. The name na'?k'?ulam?n generally translates to 'the things that we do'.

The existing capital project is complete, and due to inflationary costs experienced throughout this project, there is no budget remaining for such enhancements. Budget is therefore requested for artwork, decor and specific furniture to create a most meaningful space in the meeting room suite.

Expected Completion: Dec 2023

Strategic Direction: Social & inclusive - Inclusivity and diversity are increasing

Operating Impact: There are no operation and maintenance budget impacts associated with this request

Asset Cos	t Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
135,000) (135,000)	0	0	0	0	0	
Department: Cost Center:	Capital Projects Building Capital				Priority: 1 10 Yr Cap Plan	Ref: Not include	Renew ed B4
Title:	City Yards - Fema	ale Changer	oom Upgrades	5	-		FINAL

Justification:

Budget is requested to accommodate the increase of female staff for the Outdoor Operations team at the City Yards facility. The female changeroom facilities have become unsuitably overcrowded for the increased number of female staff. A remodeling of the changeroom and washroom is recommended to increase the area and allow for adequate room for the additional female staff.

Expected Complet	ion: Dec 2023						
Strategic Direction	n: People - Ab	ility to attract	;, select & retai	in talent			
Operating Impact:	There are no o	operation and	maintenance	budget impacts a	ssociated with	this request	
Asset Cost	Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
130,000	0	0	0	0	0	(130,000)	

2023 Capital Request Details

Department:	Capital Projects	Priority: 1	Renew
Cost Center:	Parks Capital	10 Yr Cap Plan Ref: Not incl	uded P6
Title	City Park - Rose Garden Improvements		FINAL

Justification:

Budget is requested for a cross-divisional operational initiative to modify existing amenities, with a focus on safety and operational improvements at City Park. Through the improvement of sightlines, and the introduction of new activities to encourage more park users onto the east side of the park, it is expected many of the social issues that occur will be moved from this area.

Expected Completion: Dec 2023

Strategic Direction: Community Safety - Residents feel safe

Operating Impact: There are no operation and maintenance budget impacts associated with this request

Asset Cos	st Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
220,00	0 (220,000)	0	0	0	0	0	
Department:	Capital Projects				Priority: 1		Growth
Cost Center:	Parks Capital				10 Yr Cap Plan F	Ref: Not included	I P8
Title:	Mission Recreation	on Park - Me	odular park wa	ashroom unit			FINAL

Justification:

Budget is requested to purchase, transport and install a new, unused multi-stall parks washroom unit. The unit is proposed to be installed first at Mission Rec Park (MRP) to service the high demand in the southern half of the site. When other permanent washrooms become available at MRP, the unit will be relocated to another high demand location. Cost savings are expected to be realized through the reduction of renting and maintaining of the blue portable toilets.

Expected Comple	tion: Dec 2023	}					
Strategic Directio	n: Financial m	anagement - (Cost to deliver	services is quant	ified		
Operating Impact	: There are no o	operation and	maintenance	budget impacts a	ssociated with	this request	
Asset Cost	Reserve	Borrow	Fed/Prov	Dev/Com	Utility	Taxation	
162,000	(162,000)	0	0	0	0	0	
2023 FINANCIAL PLAN 2023 Capital Requests Final Budget Summary - Water Fund

50	initially water and							
Page	Type Description	Asset Cost	Reserve	Borrow	Grant	Other	Utility	
Wat	er Capital - Priority 1							
560	Growth Osprey Ave Watermain	300,000	(300,000)	0	0	0	0	
	W7 - Network and Facility Improvements	300,000	(300,000)	0	0	0	0	
	Cost Center Totals	300,000	(300,000)	0	0	0	0	
	Grand Total	300,000	(300,000)	0	0	0	0	

2023 Capital Request Details

Department:	Capital Projects	Priority: 1	Growth
Cost Center:	Water Capital	10 Yr Cap Plan Ref: Not ir	ncluded W7 - \$0
Title:	Osprey Ave Watermain		FINAL

Justification:

Budget is requested to help minimize the overall service disruption to the surrounding Osprey Avenue neighbourhood. The project consists of upgrading the watermain along Osprey Avenue while the sewer project is being constructed as this neighbourhood was approved for intensification. The Water Utility will fund 50 per cent of the project to reflect the advancing of the renewal project, while the remaining 50 percent will be recovered, from development, through future latecomer fees.

Expected Completion: Dec 2023

Strategic Direction: Economic resiliency - City policies are enabling investment

Operating Impact: There are no operation and maintenance budget impacts associated with this request

Asset Cost	Reserve	Borrow	Fed/Prov	Dev/Com	Utility
300,000	(300,000)	0	0	0	0

FINANCIAL PLAN

Kelowna, BC Canada Five-Year Financial Plan 2023-2027

2023

THIS PAGE INTENTIONALLY LEFT BLANK

148

FINANCIAL PLAN

The City of Kelowna has developed a comprehensive Financial Plan providing a five-year summary of general revenues, operating expenditures, and capital expenditures to help guide the City throughout the next five years. The format of the plan keeps the General Fund separate from the Utility Funds to clearly identify taxation requirements for the five-year period.

Over the past year there has been a significant economic change that has led to increased inflation, interest rate pressures, supply chain disruptions and labour shortages which have impacted the City of Kelowna's Financial Plan. Strategic decision making is the key to strong financial management to govern economic challenges and will require attention to reposition priorities, seek out cost saving opportunities and find new ways to generate revenue. The priority is to continue to deliver on our promise to the community and organizations by keeping the tax rate low, addressing social issues, supporting affordable housing and improving transportation programs.

The Financial Plan attempts to provide a 'snapshot' of the future using current standards and service levels. The City is committed to delivering programs, services and infrastructure in a manner that respects the community vision identified through Imagine Kelowna. The community input received through Imagine Kelowna, the availability of funding from other sources (Federal, Provincial, and Community), the Official Community Plan, 20 Year Servicing Plan, the 2030 Infrastructure Plan and the 10-Year Capital Plan, all affect the programs included in the future years of the plan. The Council endorsed 10-Year Capital Plan, 2022-2031, and the 2030 Infrastructure Plan, have provided a guideline for future capital through to 2030 in this Financial Plan. The Financial Plan is intended to provide quidance and information upon which to base current and future expenditure decisions. It will aid in the understanding of the City's financial position and financing capabilities over the next five years.

The development of the Financial Plan follows the 2023 budget process which includes:

- Preliminary Budget approved by Council December 8, 2022
- Carryover Requests approved by Council March 20, 2023
- Final Budget approved by Council on April 24, 2023

Although most of this plan is devoted to the Preliminary Budget details, the changes made by Council at Preliminary, Carryover, and Final Budget, together, provide the 2023 portion of the Financial Plan.

For the years after 2023, the operating budget is adjusted for current one-time projects, approved prior year changes in operating requirements, new capital projects included in the Council endorsed 10-Year Capital Plan, growth and/or inflation factors depending on the nature of the revenue or expenditure, and other key assumptions. As with any planning exercise, the level of certainty and detail is most appropriately found in the current year. Future year assumptions are required to forecast general revenues, incremental operating expenditures to support new capital, debt servicing and ongoing departmental revenues and expenditures.

Assumptions used in the preparation of the years 2024 to 2027 in the Financial Plan projections include:

- An inflation rate of 2 per cent for most of the operating costs and for some revenues. The Bank of Canada aims to keep inflation at the 2 per cent midpoint of an inflation-control target range of 1 to 3 per cent. An inflation rate of 4 per cent was used in 2024 for materials expenses to accommodate the higher rate of cost escalation for these items.
- A growth rate of 1.59 per cent per year for 2024 to 2026 and 1.47 per cent per year for 2027 per the Official Community Plan was used for various revenues and expenditures and for incremental taxation revenue. Growth rates for the utilities are based on servicing expectations over the next five years which may include existing residential or commercial units.
- MFA amortization schedules and estimated rates are used as a basis for projected principal and interest where applicable.
- Approval to borrow for all priority one capital projects funded through debt as presented in the Council endorsed 10-Year Capital Plan, 2022-2031.
- There is no change in current service levels except as provided for in the capital program.
- Reserve funding is used for one-time operating and capital programs to reduce the requirement for increased taxation.

The Financial Plan summary can be found on page 543 and is used in the Financial Plan bylaw. The final column of the Financial Plan, years 2028 to 2030, is included at the request of the Ministry of Municipal Affairs and Housing for information to support the City of Kelowna's 20 Year Servicing Plan.

REVENUE SOURCES & TRENDS SUMMARY

The City defines financial strength and stability as "the ability to acquire and manage a portfolio of financial and physical assets that meet the current and future needs of our community." This is the goal. To guide future financial planning, the City uses the Council adopted Principles and Strategies for Financial Strength and Stability. The principles and strategies set out in this document guide decision-making within the City and help to realize this goal and, ultimately, the vision for Kelowna. While some of these strategies focus on a particular component of the financial balance – revenues and costs – they are all interrelated and work together to provide a broad framework for managing the City's overall finances.

Taxation

The City strives to ensure property taxes are sufficient to meet the community's short and long-term needs. Taxation is a major revenue source in the General Fund and accounts for 23 per cent of the 2023 Financial Plan's total revenue estimate of \$780.2M.

Kelowna continues to be below the average taxes paid by property owners in British Columbia. Historical tax rate increases from 2019 to 2023 is shown in the graph below beside the projected increases for 2024 to 2027. Future year increases are estimated using projected growth, average inflation, annualization of budget requests previously approved by Council, capital projects included in the Council endorsed 10-Year Capital Plan, debt changes, and other key assumptions.

Note: Rates presented in the graph above for years 2024 to 2027 have not been approved by Council and are subject to change.

The forecasted increases for 2024 to 2027 assumes approval to borrow for all priority one capital projects funded through debt as presented in the Council endorsed 10-Year Capital Plan, 2022-2031 (10YCP). Although the 10YCP presents full project budgets in one year, debt impacts have been split over the expected construction years to match required cash flow and to spread the debt repayment impacts. Included in this plan with a significant impact are the Parkinson Recreation Centre Replacement and the Capital News Centre – Expansion projects.

Parcel Taxes

Parcel taxes are taxes levied through bylaw on the unit, frontage or area of a property that receive a specific service. The majority of the \$3.4M in the 2023 Financial Plan parcel tax budget is made up of Water Utility parcel taxes and Sewer Specified Area debt recoveries.

Fees & Charges

General fund

Fees and charges are another way that the City of Kelowna raises revenues and is currently the third largest source of revenue for the general fund at 21 per cent. Fees and charges are useful because those that benefit from a service bear the cost of it. The City's objective is to ensure user fees and charges are sufficient to meet the City's needs.

General fund fees & charges revenues can be attributed to several Divisions:

• Planning & Development Services generates revenue in the form of development, subdivision, permit and inspection fees along with other service revenues. Most future fees and charges revenue in Planning and Development are estimated using growth projections alone as there is a direct relationship between development revenue and community growth.

- The Partnerships & Investments Division generates revenues in rental fees from properties owned by the City and from parking throughout the City. Future revenues have been factored by inflation alone as there is little anticipated growth in the inventory of these real estate assets.
- The Infrastructure Division budget includes Fleet Services, Parks, Public Works and Utility Services which generates the largest proportion of revenue from fees & charges. This revenue is collected through internal equipment charges, cemetery fees, landfill tipping fees and waste collection charges. Estimates of future fees and charges revenue generation are factored for inflation. This Division also includes Regional Transit. Future transit revenues are

- factored for growth to reflect the expected increase in service demand due to community growth.
- Active Living & Culture generates revenue from a wide variety of services including facility rentals and sales revenues along with program revenue and recreation facility use revenues. Estimates of future fees and charges revenue generation are factored for inflation and growth to recognize the expected increase in service demand due to community growth as well as recovery for program costs increases.
- Corporate & Protective Services generates revenue through Bylaw fines, Police Services such as criminal record checks, and the sale of Fire Dispatch Services to other municipalities and regional districts within the Province. Estimates of future fees and charges revenue generation for Corporate & Protective Services are factored for inflation.

Airport and Utility funds

The Kelowna International Airport (YLW) is the largest municipally owned and operated airport in Canada. YLW operates on a financially self-sufficient basis generating all funding required for services and infrastructure from several sources including airport improvement fees, landing & terminal fees, and parking fees. Passenger numbers for the Airport are expected to increase to 2.1M in 2023.

The City of Kelowna operates two utility funds: the Water Utility and the Wastewater Utility. Included in the 2023 Financial Plan is a budgeted 6 per cent rate increase for water rates, 2 per cent for the Water Quality Enhancement Fee and a 1.6 per cent rate increase for wastewater rates.

The City Wastewater Utility operates citywide. Future growth potential is limited by infrastructure cost and the availability of Provincial capital support funding. Future local service areas have been identified and the number of sewer customers and amount of revenue generated is scheduled to increase slightly over the next five years. Future revenue estimates are factored for both growth and inflation.

Borrowing Proceeds

Debt is a common tool that municipalities use to finance capital expenditures over the medium and long term. Debt is viewed as a fair way of financing a project since those who are paying the principal and interest charges are benefitting from the service. The City strives to ensure debt financing is used strategically to maintain the City's financial strength and stability.

There are no new borrowing requirements in the Financial Plan for 2023, but the City does anticipate working through the alternative approval process in 2024 to obtain approval to borrow for the replacement of the Parkinson Recreation Centre. Future projects that are planned to be funded through borrowing as indicated in the Council endorsed 10-Year Capital Plan, 2022-2031 include:

- 2024-2026: Parkinson Recreation Centre Replacement
- 2024: North Glenmore Fire Hall
- 2025-2026: Capital News Centre Expansion
- 2025: Mission Activity Centre
- 2025: City Hall Envelope Renewal
- 2029: City Yards New Offices

Reserves and Surplus

Reserves

Saving money for future projects and unexpected expenditures is an important planning consideration for the City of Kelowna. Reserves provide a financial mechanism for saving money to finance all or part of future infrastructure, equipment, and other requirements. Reserve funds can also provide a degree of financial stability, by reducing reliance on indebtedness to finance capital projects and acquisitions, or flexibility to leverage opportunities as they arise.

This revenue source is mainly used in the capital program for major works. A balance must be maintained between expenditure levels and reserve replenishment to ensure the sustainability of this funding source. The 2030 Infrastructure Plan relies on surplus funds being contributed to reserve on an annual basis. Reserve funding requirements vary significantly depending on the annual capital programs. In the 2023 Financial Plan, it is the largest source of revenue at 42 per cent largely due to the addition of carryover budgets which are funded through reserves.

Surplus

Surplus funds generated in the General Fund, as well as the Utility Funds of Water and Wastewater, are contributed to the accumulated surplus annually. The Council adopted Principles & Strategies for Financial Strength and Stability document includes a strategy that restricts the use of these funds to emergencies such as fires and floods.

Other sources

General revenues

General revenues include revenues not associated directly with any one City division or service. Examples of this revenue include investment interest, penalties on taxes and utility accounts, traffic fine revenue sharing and 1% payment in lieu of taxes for private utilities. These revenues are anticipated to increase by growth and/or inflation in the coming years. Over the next five years, total general revenues are anticipated to increase by approximately 2.2 per cent annually 2024 to 2026 and 2.1 per cent in 2027.

Government grants and contributions

Grants are a useful tool in a municipality's financial toolbox and can be used strategically to offset costs to taxpayers and ratepayers. However, a reliance on grants to fund capital projects and services will undermine a community's ability to attain

financial strength and stability. Grants in 2023 help to fund 6 per cent of the City's overall budget. The City's objective is to pragmatically leverage grant opportunities.

Significant grants in 2023 include the transit partnership with the Province of British Columbia which provides funding for conventional transit and custom transit costs at 26 per cent and the Investing in Canada Infrastructure program which is a federal and provincial program to help fund Kelowna's Sewer Connection area project.

Gaming revenues are expected to increase by 27 per cent throughout 2023. This revenue is included in the RCMP budget to be applied against police costs.

The city continues to receive funding from the Canada Community-Building Fund, formerly the federal Gas Tax Fund. This fund provides predictable, long-term and stable funding for investment in infrastructure and capacity building projects to local governments in British Columbia. In 2023, the City of Kelowna expects to receive \$5.7M.

The City of Kelowna will continue to apply for Federal and Provincial Grants during the year. Successful grants will be added to the 2023 Financial Plan through the budget amendment process.

Summary of revenue sources (\$ thousands)

The following graph summaries the City's revenue sources by type. The years 2019 to 2022 are based on actual amounts received. Years 2023 to 2027 are forecasted values calculated using the assumptions discussed above.

Note: Reserve funding totals in the chart above are higher in 2023 due to carry-over projects.

Five-Year Financial Plan Summaries

Financial Plan 2023-2027

	2023	2024	2025	2026	2027	2028-2030
Revenue						
Property Value Tax	176,624,339	188,279,055	200,295,838	213,266,188	225,313,048	723,943,923
Library Requisition	7,325,200	7,471,704	7,621,138	7,773,561	7,929,032	24,751,330
Parcel Taxes	3,433,673	3,386,926	3,226,092	2,878,729	2,643,767	7,706,257
Fees and Charges	166,752,954	168,998,093	176,296,845	181,604,696	185,477,990	607,768,371
Borrowing Proceeds	8,507,400	161,039,504	50,989,600	0	0	6,321,200
Other Sources	90,079,744	64,924,162	68,236,877	65,808,081	64,104,429	192,860,588
	452,723,310	594,099,445	506,666,391	471,331,255	485,468,266	1,563,351,669
Transfer between Funds						
Reserve Funds	2,399,489	1,803,987	4,018,987	5,018,987	5,018,987	4,271,961
DCC Funds	55,191,710	27,879,895	45,071,243	42,110,785	72,931,463	131,287,135
Surplus/Reserve Accounts	269,856,570	73,537,991	74,663,418	52,310,615	67,176,349	243,984,608
	327,447,769	103,221,873	123,753,649	99,440,388	145,126,799	379,543,705
Total Revenues	780,171,079	697,321,318	630,420,039	570,771,643	630,595,065	1,942,895,374
Expenditures						
Municipal Debt						
Debt Interest	3,980,837	5,854,736	10,057,004	13,579,814	15,783,808	46,825,315
Debt Principal	6,918,584	7,140,895	9,295,237	13,569,554	14,561,097	43,009,316
Capital Expenditures	367,208,100	288,733,676	204,324,905	129,728,128	173,098,283	427,984,615
Other Municipal Purposes						
General Government Planning, Development &	38,935,773	44,982,463	47,990,399	51,232,650	54,614,371	185,472,621
Building Services	35,969,865	29,502,083	29,279,911	30,240,946	31,205,486	99,725,484
Community Services	102,941,048	105,058,206	108,811,337	112,228,174	115,657,991	368,692,809
Protective Services	94,492,441	88,067,171	91,149,022	94,369,042	97,594,381	313,263,910
Utilities	27,894,607	26,681,298	27,473,602	28,278,225	28,981,397	92,258,679
Airport	22,666,780	23,045,145	24,379,339	26,662,772	27,403,596	86,108,813
· · · · · ·	701,008,035	619,065,673	552,760,756	499,889,305	558,900,411	1,663,341,561
Transfers between Funds						
Reserve Funds	31,694,307	31,556,581	32,324,994	32,376,236	32,439,085	97,164,211
DCC Funds	0	0	0	0	0	0
Surplus/Reserve Accounts	47,468,737	46,699,064	45,334,289	38,506,102	39,255,570	182,389,601
	79,163,044	78,255,645	77,659,283	70,882,338	71,694,655	279,553,812
Total Expenditures	780,171,079	697,321,318	630,420,039	570,771,643	630,595,065	1,942,895,374

General Fund Tax Impact Summary

	2023	2024	2025	2026	2027
General revenues	(15,682,529)	(16,022,621)	(16,371,392)	(16,735,455)	(17,089,412)
Net operating budget	177,175,069	188,046,676	199,214,230	211,274,643	222,421,460
Pay-as-you-go capital	15,131,800	16,255,000	17,453,000	18,727,000	19,981,000
 Taxation demand	176,624,340	188,279,055	200,295,838	213,266,188	225,313,048
New construction tax revenue	(3,200,000)	(2,808,000)	(2,994,000)	(3,185,000)	(3,135,000)
Municipal Impact	2.78%	4.01%	3.79%	3.89%	3.18%
Public Safety Levy Impact	1.00%	1.00%	1.00%	1.00%	1.00%
Net property owner impact	3.78%	5.01%	4.79%	4.89%	4.18%

Note: Totals may not add due to rounding.

General Revenue

	2023	2024	2025	2026	2027
Licences					
Dog Licences	3,100	3,100	3,100	3,100	3,100
	3,100	3,100	3,100	3,100	3,100
Franchise fee					
Fortis Gas	2.157.340	2.234.789	2.315.017	2.398.126	2.481.341
	2,157,340	2,234,789	2,315,017	2,398,126	2,481,341
Interest & penalties					
Interest on Investments	7.129.261	7.242.616	7.357.774	7.474.763	7.584.642
Tax Arrears & Delinguent	195.000	198.101	201.250	204.450	207.455
Penalties on Taxes	1.500.000	1.523.850	1.548.079	1.572.693	1.595.812
Penalties Utility Accounts	100,000	101,590	103,205	104,846	106,387
Interest on Accounts Receivable	69,000	69,000	69,000	69,000	69,000
—	8,993,261	9,135,157	9,279,308	9,425,752	9,563,296
Miscellaneous revenues					
Work Order Administration	40,000	41,436	42,924	44,465	46,008
Local Improvement Prepayments	24,050	24,050	24,050	24,050	24,050
Discounts Earned & Misc	137,029	141,948	147,045	158,683	170,187
Risk to Roll	(310,000)	(321,129)	(332,658)	(344,600)	(356,558)
—	(108,921)	(113,695)	(118,639)	(117,402)	(116,313)
Federal contributions					
Grants in Lieu of Taxes	150,438	153,447	156,516	159,646	162,839
Provincial contributions					
Grants in Lieu of Taxes	476,169	485,692	495,406	505,314	515,420
Traffic Fine Revenue Sharing	1,550,553	1,575,207	1,600,253	1,625,697	1,649,595
Climate Action Rev Incentive	-	-	-	-	-
Certificate of Recognition Rebate	143,000	143,000	143,000	143,000	143,000
Appropriation to Reserves	(143,000)	(143,000)	(143,000)	(143,000)	(143,000)
	2,026,722	2,060,899	2,095,659	2,131,011	2,165,015
Natural Gas Utility	-	-	-	-	-
Taxes - private utilities					
1% in Lieu of Taxes	2,460,589	2,548,924	2,640,431	2,735,222	2,830,134
Total General Revenues	15,682,529	16,022,621	16,371,392	16,735,455	17,089,412
Property taxation	176,624,339	188,279,055	200,295,838	213,266,188	225,313,048
Total General Revenue & taxation	192,306,868	204,301,676	216,667,230	230,001,643	242,402,460

Operating Summary - General Fund Revenues/Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Library Requisition	(7 325 200)	(7 471 704)	(7 621 138)	(7 773 561)	(7 929 032)
Parcel Tax	(142,448)	(142.448)	(142,448)	(142,448)	(142,448)
Fees and Charges	(73.415.113)	(74.915.627)	(76.340.683)	(77.864.391)	(79.416.512)
Sales of Service	(60.940.805)	(62.167.051)	(63.311.274)	(64.537.527)	(65.782.693)
Other	(00)0 10,000,	(0_)_0,00,	(00)011)1	(0.)007,027,	(00)/01/0000
User Fees	(12.474.308)	(12.748.576)	(13.029.409)	(13.326.864)	(13.633.819)
Other Revenue	(40,704,009)	(37.681.214)	(38,236,787)	(38.017.169)	(38,716,543)
Interest	(1.910.490)	(1.948.700)	(1.987.674)	(2.027.427)	(2.067.976)
Grants	(19.561.800)	(17.129.076)	(17.420.564)	(17.715.851)	(18.000.403)
Other	0	0	0	0	0
Services to Other Governments	(8.827.427)	(8.883.140)	(9.060.114)	(9.240.615)	(9.424.506)
Interdepartment Transfer	(10.404.292)	(9,720,298)	(9,768,435)	(9.033.276)	(9,223,658)
Interfund Transfer	0	0	0	0	0
Transfers from Funds	(20,855,859)	(4,033,687)	(6,042,887)	(7,042,887)	(7,042,887)
Special (Stat Reserve) Funds	(2,399,489)	(1,803,987)	(4,018,987)	(5,018,987)	(5,018,987)
Development Cost Charges	(795,400)	(795,400)	(795,400)	(795,400)	(795,400)
Accumulated Surplus	(17,660,970)	(1,434,300)	(1,228,500)	(1,228,500)	(1,228,500)
Total Revenue	(142,442,629)	(124,244,680)	(128,383,943)	(130,840,456)	(133,247,422)
Expenditures					
Salaries and Wages	99 178 350	104 039 948	109 510 591	115 310 661	121 245 457
Internal Equipment	8 595 130	9 057 844	9 452 186	9 772 327	10 093 327
Material and Other	57.941.849	47.481.619	48.638.471	49.701.181	50.781.342
Contract Services	106.377.812	102.568.003	106.101.913	109.759.136	113.424.595
Debt Interest	2.838.890	4.586.506	7.841.954	10.519.185	11.688.491
Debt Principal	3.948.472	4.180.067	5.837.986	7.716.490	9.032.323
Internal Allocations	4.674.907	4.462.507	3.527.507	3.527.507	3.527.507
Interdepartment Transfer	4,674,907	4,462,507	3,527,507	3,527,507	3,527,507
Interfund Transfer	0	0	0	0	0
Transfer to Funds	36,062,288	35,914,862	36,687,565	35,808,612	35,875,839
Special (Stat Reserve) Funds	31,495,847	31,358,121	32,126,534	32,177,776	32,240,625
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	4,566,441	4,556,741	4,561,031	3,630,836	3,635,214
Total Expenditures	319,617,698	312,291,356	327,598,173	342,115,099	355,668,882
Net Operating Expenditures	177 175 069	188 046 676	199 214 230	211,274,643	222 421 460
Neter Tetals may not add due to reyrading	17,175,005	100,040,070	199,214,290		222,421,400

General Fund - operating summary by division

2023 Net Operating Expenditure

Net Operating Expenditure by Year

	2023	2024	2025	2026	2027
City Administration	2,488,272	2,547,848	2,601,499	2,666,355	2,731,966
City Clerks	1,617,092	1,786,886	1,895,493	1,953,460	2,011,739
Planning & Development Services	(382,496)	(99,128)	76,748	263,266	460,321
Partnerships & Investments	9,871,586	9,848,908	10,146,993	10,433,618	10,716,339
Infrastructure	40,279,072	43,378,231	45,637,518	47,577,986	49,543,210
Active Living & Culture	11,517,155	11,600,522	12,014,771	12,262,715	12,514,300
Corporate & Protective Services					
Corporate Services	7,451,944	9,098,666	11,139,290	13,345,242	15,682,815
Community Safety	52,793,649	55,935,872	57,952,094	60,122,232	62,293,149
Fire Department	22,667,716	23,477,852	24,085,914	24,923,904	25,762,409
Corporate Strategic Services	10,178,364	11,042,800	11,418,238	11,750,114	12,083,926
Financial Services	6,798,054	7,055,128	7,306,967	7,606,296	7,880,891
Debt & Other	11,894,661	12,373,091	14,938,705	18,369,455	20,740,395
Total Division Net Operating Expenditures	177,175,069	188,046,676	199,214,230	211,274,643	222,421,460

City Administration

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue		<u> </u>		2	
Parcel Tax	0	0	0	0	0
Fees and Charges	0	0	0	0	0
Sales of Service	0	0	0	0	0
User Fees	0	0	0	0	0
Other Revenue	0	0	0	0	0
Interest	0	0	0	0	0
Grants	0	0	0	0	0
Services to Other Governments	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Transfers from Funds	(14,500)	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(14,500)	0	0	0	0
Total Revenue	(14,500)	0	0	0	0
Expenditures					
Salaries and Wages	1,227,847	1,264,356	1,302,023	1,340,889	1,379,990
Internal Equipment	21,090	21,512	21,942	22,381	22,829
Material and Other	907,405	908,621	917,108	935,450	954,159
Contract Services	346,430	353,359	360,426	367,635	374,988
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	2,502,772	2,547,848	2,601,499	2,666,355	2,731,966
Net Operating Expenditures	2,488,272	2,547,848	2,601,499	2,666,355	2,731,966

City Clerk

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue	0	0	0	0	0
Parcel Tax	(10.000)	(10.250)	(10 721)	(11,110)	U (11 501)
Fees and Charges	(10,000)	(10,359)	(10,731)	(11,116)	(11,501)
Sales of Services	(1,900)	(1,968)	(2,039)	(2,112)	(2,185)
User Fees	(8,100)	(8,391)	(8,692)	(9,004)	(9,316)
Other Revenue	(80,000)	(81,600)	(83,232)	(84,897)	(86,595)
Interest	0	0	0	0	0
Grants	0	0	0	0	0
Services to Other Governments	0	0	0	0	0
Interdepartment Transfer	(80,000)	(81,600)	(83,232)	(84,897)	(86,595)
Transfers from Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Revenue	(90,000)	(91,959)	(93,963)	(96,013)	(98,096)
Expenditures					
Salaries and Wages	1,129,555	1,228,116	1,272,206	1,317,878	1,363,608
Internal Equipment	0	0	0	0	0
Material and Other	482,077	553,360	617,933	630,292	642,898
Contract Services	95,460	97,369	99,317	101,303	103,329
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	1,707,092	1,878,845	1,989,456	2,049,473	2,109,835
Net Operating Expenditures	1,617,092	1,786,886	1,895,493	1,953,460	2,011,739

Planning & Development Services

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
2					
Revenue	0	0	0	0	0
Farcer rax	(10 (52 272)	(10.826.114)	(11.001.670)	(11 180 086)	(11 240 022)
Fees and Charges	(10,053,372)	(10,826,114)	(11,001,670)	(11,180,086)	(11,349,033)
Sales of Services	(10,053,372)	(10,820,114)	(11,001,670)	(11,180,086)	(11,349,033)
Oser Fees	-	(181.800)	(78,020)	(70,501)	(01 102)
	(003,900)	(181,800)	(78,030)	(79,591)	(81,183)
Grants	(485,600)	0	0	0	0
Granicas to Other Covernments	(485,600)	0	0	0	0
	(178.200)	(181.800)	(78,020)	(70,501)	(01 102)
Transfer from Funds	(178,300)	(181,866)	(78,030)	(79,591)	(81,183)
Fransier from Fords	(1,754,100)	(175,880)	(155,880)	(155,880)	(155,880)
Special (Stat Reserve) Follos	(75,000)	0	0	0	0
Development Cost Charges	U (4. 670, 400)	U (475,000)	U (155,000)	U (455,800)	(455,000)
Accumulated Surplus	(1,679,100)	(175,880)	(155,880)	(155,880)	(155,880)
Total Revenue	(13,071,372)	(11,183,860)	(11,235,580)	(11,415,557)	(11,586,096)
Expenditures					
Salaries and Wages	8,976,231	9,053,073	9,267,228	9,599,921	9,933,038
Internal Equipment	118,487	123,917	126,395	128,923	131,501
Material and Other	3,169,648	1,481,842	1,491,387	1,521,215	1,551,639
Contract Services	69,510	70,900	72,318	73,764	75,239
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	55,000	55,000	55,000	55,000	55,000
Interdepartment Transfer	55,000	55,000	55,000	55,000	55,000
Interfund Transfer	0	0	0	0	0
Transfer to Funds	300,000	300,000	300,000	300,000	300,000
Special (Stat Reserve) Funds	300,000	300,000	300,000	300,000	300,000
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	12,688,876	11,084,732	11,312,328	11,678,823	12,046,417
Net Operating Expenditures	(382,496)	(99,128)	76,748	263,266	460, <u>321</u>

Partnerships & Investments

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Devenue					
Revenue	0	0	0	0	0
Parcel Tax	(10.087.520)	U (10.201.650)	U (10,400,040)	U (10,722,485)	(10.054.774)
	(10,087,520)	(10,291,050)	(10,499,949)	(10,722,485)	(10,954,774)
Lisor Egos	(7,877,050)	(0,054,597)	(0,195,209)	(0,559,195)	(0,520,579)
Other Payanua	(2,210,404)	(2,257,055)	(2,304,000)	(2,303,290)	(2,420,393)
Interest	(007,488)	(400,858)	(479,433)	(489,023)	(498,803)
Grants	(89,400)	(1,200)	(2,424)	ט (כדג כ)	(2.521)
Grants	(89,400)	(1,200)	(2,424)	(2,472)	(2,321)
Interdepartment Transfer	(E19.099)				(406.282)
Transfer from Funds	(510,000)	(407,038)	(477,011)	(400,551)	(490,282)
Consciel (Stat Desenve) Funds	(2,172,730)	(424,340)	(424,340)	(424,340)	(424,340)
Special (Stat Reserve) Folios	(552,000)	0	0	0	0
A severe violate d'Everelue	(1 (20 120)	(424,240)	(424.240)	(424.240)	(424,240)
Accumulated Surplus	(1,620,130)	(424,340)	(424,340)	(424,340)	(424,340)
Total Revenue	(12,867,738)	(11,184,848)	(11,403,724)	(11,635,848)	(11,877,917)
Expenditures					
Salaries and Wages	5,738,045	5,791,256	6,006,216	6,221,839	6,437,737
Internal Equipment	311,052	317,273	323,619	330,091	336,693
Material and Other	8,623,903	6,705,819	6,845,094	6,981,996	7,121,636
Contract Services	3,138,532	3,223,117	3,310,177	3,399,790	3,490,205
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	673,260	673,260	673,260	673,260	673,260
Interdepartment Transfer	673,260	673,260	673,260	673,260	673,260
Interfund Transfer	0	0	0	0	0
Transfer to Funds	4,254,532	4,323,031	4,392,351	4,462,490	4,534,725
Special (Stat Reserve) Funds	3,708,862	3,777,361	3,846,681	3,916,820	3,989,055
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	545,670	545,670	545,670	545,670	545,670
Total Expenditures	22,739,324	21,033,756	21,550,717	22,069,466	22,594,256
Net Operating Expenditures	9,871,586	9,848,908	10,146,993	10,433,618	10,716,339

Infrastructure

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Parcel Tax	0	0	0	0	0
Fees and Charges	(42,063,900)	(42,874,993)	(43,603,828)	(44,444,752)	(45,292,737)
Sales of Service	(35,744,924)	(36,431,417)	(37,033,188)	(37,744,536)	(38,460,928)
Oser Fees	(0,318,970)	(0,443,570)	(0,570,040)	(0,700,210)	(0,831,809)
	(16,507,388)	(15,896,470)	(10,118,078)	(10,380,085)	(10,041,025)
Interest		(42,75,4,220)	U (12.057.112)	0	(12,256,620)
Grants	(12,569,900)	(12,754,320)	(12,957,113)	(13,163,131)	(13,356,629)
Services to Other Governments	(1,333,400)	(1,239,233)	(1,263,328)	(1,287,893)	(1,312,730)
Interdepartment Transfer	(2,604,088)	(1,902,917)	(1,898,237)	(1,935,061)	(1,972,266)
Transfers from Funds	(3,278,271)	(634,131)	(577,131)	(577,131)	(577,131)
Special (Stat Reserve) Funds	(508,971)	(76,071)	(76,071)	(76,071)	(76,071)
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(2,769,300)	(558,060)	(501,060)	(501,060)	(501,060)
Total Revenue	(61,849,559)	(59,405,594)	(60,299,637)	(61,407,968)	(62,511,493)
Expenditures					
Salaries and Wages	21,963,444	23,105,293	23,950,102	24,809,911	25,670,815
Internal Equipment	7,611,612	8,051,595	8,425,812	8,725,426	9,025,488
Material and Other	16,562,106	13,852,280	14,348,850	14,725,767	15,106,420
Contract Services	40,409,823	41,702,436	43,151,287	44,700,418	46,251,523
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	3.662.669	3.450.269	2.515.269	2.515.269	2.515.269
Interdepartment Transfer	3 662 669	3 450 269	2,515,269	2 515 269	2 515 269
Interfund Transfer	0	0	0	0	2,010,200
Transfer to Funds	11 918 977	12 621 952	13 545 835	13 509 163	13 / 85 188
Special (Stat Reserve) Funds	10 991 362	11 690 537	12 610 130	12 568 653	12 540 300
Development Cost Charges	10,001,002	0	0	0	0
Accumulated Surplus	927,615	931,415	935,705	940,510	944,888
Total Expenditures	102,128,631	102,783,825	105,937,155	108,985,954	112,054,703
Net Operating Expenditures	40,279,072	43,378,231	45,637,518	47,577,986	49,543,210

Active Living & Culture

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue	_			_	_
Parcel Tax	0	0	0	0	0
Fees and Charges	(5,589,740)	(5,800,771)	(6,009,019)	(6,224,743)	(6,440,741)
Sales of Service	(4,027,290)	(4,182,229)	(4,332,371)	(4,487,903)	(4,643,633)
Other	-	-	-	-	-
User Fees	(1,562,450)	(1,618,542)	(1,676,648)	(1,736,840)	(1,797,108)
Other Revenue	(660,300)	(188,904)	(192,682)	(196,536)	(200,467)
Interest	0	0	0	0	0
Grants	(585,100)	(112,200)	(114,444)	(116,733)	(119,068)
Other	-	-	-	-	-
Services to Other Governments	-	-	-	-	-
Interdepartment Transfer	(75,200)	(76,704)	(78,238)	(79,803)	(81,399)
Interfund Transfer	-	-	-	-	-
Transfers from Funds	(1,249,800)	-	-	-	0
Special (Stat Reserve) Funds	(20,000)	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(1,229,800)	-	-	-	0
Total Revenue	(7,499,840)	(5,989,675)	(6,201,701)	(6,421,279)	(6,641,208)
Expenditures					
Salaries and Wages	7,299,530	7,603,713	7,969,187	8,255,281	8,541,739
Internal Equipment	194,400	198,288	202,254	206,299	210,425
Material and Other	4,693,955	3,359,184	3,446,036	3,514,957	3,585,256
Contract Services	5,639,706	5,253,108	5,423,091	5,531,553	5,642,184
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	1.189.404	1.175.904	1.175.904	1.175.904	1.175.904
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	1,189,404	1,175,904	1,175,904	1,175,904	1,175,904
Total Expenditures	19,016,995	17,590,197	18,216,472	18,683,994	19,155,508
Net Operating Expenditures	11,517,155	11,600,522	12,014,771	12,262,715	12,514,300

Corporate & Protective Services - Corporate Services

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Parcel Tax	0	0	0	0	0
Fees and Charges	(61,000)	(62,220)	(63,464)	(64,733)	(66,028)
Sales of Service	(5,000)	(5,100)	(5,202)	(5,306)	(5,412)
Other	0	0	0	0	0
User Fees	(56,000)	(57,120)	(58,262)	(59,427)	(60,616)
Other Revenue	(325,760)	(332,275)	(338,921)	(345,699)	(352,613)
Interest	0	0	0	0	0
Grants	0	0	0	0	0
Services to Other Governments	0	0	0	0	0
Interdepartment Transfer	(325,760)	(332,275)	(338,921)	(345,699)	(352,613)
Transfers from Funds	(572,840)	(128,800)	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(572,840)	(128,800)	0	0	0
Total Revenue	(959,600)	(523,295)	(402,385)	(410,432)	(418,641)
Expenditures					
Salaries and Wages	3,471,881	4,844,438	6,707,431	8,824,745	11,071,908
Internal Equipment	900	918	936	955	974
Material and Other	3,536,127	3,345,916	3,374,006	3,441,486	3,510,316
Contract Services	1,402,636	1,430,689	1,459,302	1,488,488	1,518,258
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	8,411,544	9,621,961	11,541,675	13,755,674	16,101,456
Net Operating Expenditures	7,451,944	9,098,666	11,139,290	13,345,242	15,682,815

Corporate & Protective Services - Community Safety

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue	0	0	0	0	
Parcel Tax	0	0	0	0	0
Fees and Charges	(934,241)	(957,603)	(981,600)	(1,006,251)	(1,031,183)
Sale of Service	(797,154)	(816,811)	(836,994)	(857,719)	(878,690)
User Fees	(137,087)	(140,792)	(144,606)	(148,532)	(152,493)
Other Revenue	(7,402,387)	(5,917,313)	(6,035,659)	(6,156,373)	(6,279,500)
Interest	0	0	0	0	0
Grants	(5,778,900)	(4,261,356)	(4,346,583)	(4,433,515)	(4,522,185)
Services to Other Governments	(1,393,292)	(1,421,158)	(1,449,581)	(1,478,573)	(1,508,144)
Interdepartment Transfer	(230,195)	(234,799)	(239,495)	(244,285)	(249,171)
Transfers from Funds	(9,172,900)	(147,220)	(147,220)	(147,220)	(147,220)
Special (Stat Reserve) Funds	(300,000)	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(8,872,900)	(147,220)	(147,220)	(147,220)	(147,220)
Total Revenue	(17,509,528)	(7,022,136)	(7,164,479)	(7,309,844)	(7,457,903)
Expenditures					
Salaries and Wages	11,620,014	11,843,407	12,268,586	12,709,028	13,150,031
Internal Equipment	148,466	151,435	154,464	157,553	160,704
Material and Other	3,504,173	1,252,236	1,198,624	1,222,596	1,247,048
Contract Services	55,030,524	49,710,930	51,494,899	53,342,899	55,193,269
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	70,303,177	62,958,008	65,116,573	67,432,076	69,751,052
Net Operating Expenditures	52,793,649	55,935,872	57,952,094	60,122,232	62,293,149

Corporate & Protective Services - Fire Department

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
-					
Revenue	0	0	0	0	0
	(2,762,500)	0	0	(2,020,550)	0
Fees and Charges	(2,760,588)	(2,815,799)	(2,872,116)	(2,929,558)	(2,988,149)
Sales of Service	(770,622)	(786,034)	(801,755)	(817,790)	(834,146)
User Fees	(1,989,966)	(2,029,765)	(2,070,361)	(2,111,768)	(2,154,003)
Other Revenue	(436,612)	(445,344)	(454,251)	(463,336)	(472,603)
Interest	0	0	0	0	0
Grants	0	0	0	0	0
Services to Other Governments	(436,612)	(445,344)	(454,251)	(463,336)	(472,603)
Interdepartment Transfer	0	0	0	0	0
Transfers from Funds	(150,000)	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(150,000)	0	0	0	0
Total Revenue	(3,347,200)	(3,261,143)	(3,326,367)	(3,392,894)	(3,460,752)
Expenditures					
Salaries and Wages	22,337,994	23,276,874	24,162,734	25,030,176	25,898,723
Internal Equipment	176,743	180,278	183,883	187,561	191,312
Material and Other	1,548,656	1,431,306	1,461,033	1,490,254	1,520,059
Contract Services	200.691	204.705	208.799	212.975	217.235
Debt Interest	0	0	0	0	,
Debt Principal	0	0	0	0	0
Internal Allocations	16,000	16 000	16 000	16 000	16 000
Interdepartment Transfer	16,000	16,000	16,000	16,000	16,000
Interfund Transfer	10,000	10,000	10,000	10,000	10,000
Transfer to Funds	1 734 832	1 629 832	1 379 832	1 379 832	1 379 832
Special (Stat Reserve) Funds	1 255 000	1 150 000	900 000	900 000	900 000
Development Cost Charges	0	1,130,000	0	0	0
Accumulated Surplus	479,832	479,832	479,832	479,832	479,832
Total Expenditures	26,014,916	26,738,995	27,412,281	28,316,798	29,223,161
Net Operating Expenditures	22,667,716	23,477,852	24,085,914	24,923,904	25,762,409

Corporate Strategic Services

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Devenue					
Revenue Darrol Tax	0	0	0	0	0
Falcel Tax	(110,400)	(112,608)	(114 960)	U (117 157)	(110 500)
Fees and Charges	(110,400)	(112,008)	(114,800)	(117,157)	(119,500)
Lisor Eggs	(2,400)	(2,440)	(2,497)	(2,547)	(2,590)
Other Payanua	(108,000)	(110,100)	(112,505)	(114,010)	(110,902)
	(105,952)	(115,295)	(117,598)	(119,950)	(122,349)
Grants	(52,900)	0	0	0	0
Services to Other Governments	(52,500)	0	0	0	0
Interdepartment Transfer	(112 022)	(115 202)	(117 508)	(110.050)	(122,340)
Transfers from Funds	(113,032)	(113,233)	(117,558)	(115,550)	(122,349)
Special (Stat Reserve) Funds	(255,500)	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(253,900)	0	0	0	0
Total Revenue	(530,232)	(227,901)	(232,458)	(237,107)	(241,849)
For an diama					
Expenditures	6 456 967		c		- 405 - 200
Salaries and Wages	6,456,867	6,750,926	6,993,284	7,244,343	/,495,/22
Internal Equipment	6,500	6,630	6,763	6,898	7,036
Material and Other	4,056,709	4,092,305	4,229,075	4,313,657	4,399,930
Contract Services	36,000	36,720	37,454	38,203	38,967
Debt Interest	0	0	0	0	0
Debt Principal	0	231,600	231,600	231,600	231,600
RCMP CONTRACT	0				
Internal Allocations	0	0	0	0	0
Interdepartment Transfer	0	0	0	0	0
Interfund Transfer	0	0	0	0	0
Transfer to Funds	152,520	152,520	152,520	152,520	152,520
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	152,520	152,520	152,520	152,520	152,520
Total Expenditures	10,708,596	11,270,701	11,650,696	11,987,221	12,325,775
Net Operating Expenditures	10,178,364	11,042,800	11,418,238	11,750,114	12,083,926

Financial Services

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Parcel Tax	0	0	0	0	0
Fees and Charges	(536,087)	(555,333)	(575,269)	(555,333)	(554,689)
Sales of Service	(536,087)	(555,333)	(575,269)	(555,333)	(554,689)
Other	0	0	0	0	0
User Fees	0	0	0	0	0
Other Revenue	(1,094,491)	(1,038,345)	(1,063,055)	(1,089,929)	(1,122,940)
Interest	0	0	0	0	0
Grants	0	0	0	0	0
Other	0	0	0	0	0
Services to Other Governments	0	0	0	0	0
Interdepartment Transfer	(1,094,491)	(1,038,345)	(1,063,055)	(1,089,929)	(1,122,940)
Interfund Transfer	0	0	0	0	0
Transfers from Funds	(498,500)	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(498,500)	0	0	0	0
Total Revenue	(2,129,078)	(1,593,678)	(1,638,324)	(1,645,262)	(1,677,629)
Expenditures					
Salaries and Wages	7,529,046	7,799,339	8,079,335	8,369,383	8,659,801
Internal Equipment	5,880	5,998	6,118	6,240	6,365
Material and Other	1,328,728	779,821	796,017	811,937	828,176
Contract Services	8,500	8,670	8,843	9,020	9,200
Debt Interest	0	0	0	0	0
Debt Principal	0	0	0	0	0
RCMP CONTRACT	0				
Internal Allocations	54,978	54,978	54,978	54,978	54,978
Interdepartment Transfer	54,978	54,978	54,978	54,978	54,978
Interfund Transfer	0	0	0	0	0
Transfer to Funds	0	0	0	0	0
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	0	0	0	0	0
Total Expenditures	8,927,132	8,648,806	8,945,291	9,251,558	9,558,520
Net Operating Expenditures	6,798,054	7,055,128	7,306,967	7,606,296	7,880,891

Financial Services - Debt & Other

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
D					
Revenue	(7.225.200)		(7 (21 120)		(7,020,022)
Library Requisition	(7,325,200)	(7,471,704)	(7,621,138)	(7,773,561)	(7,929,032)
Parcel Tax	(142,448)	(142,448)	(142,448)	(142,448)	(142,448)
Fees and Charges	(608,265)	(608,177)	(608,177)	(608,177)	(608,177)
	(525,000)	(525,000)	(525,000)	(525,000)	(525,000)
User Fees	(83,265)	(83,177)	(83,177)	(83,177)	(83,177)
Other Revenue	(12,759,751)	(13,014,946)	(13,275,246)	(12,605,750)	(12,857,865)
Interest	(1,910,490)	(1,948,700)	(1,987,674)	(2,027,427)	(2,067,976)
Grants	0	0	U (5.000.05.4)	0	0
Services to Other Governments	(5,664,123)	(5,777,405)	(5,892,954)	(6,010,813)	(6,131,029)
Interdepartment Transfer	(5,185,138)	(5,288,841)	(5,394,618)	(4,567,510)	(4,658,860)
Transfers from Funds	(1,738,318)	(2,523,316)	(4,738,316)	(5,738,316)	(5,738,316)
Special (Stat Reserve) Funds	(942,918)	(1,727,916)	(3,942,916)	(4,942,916)	(4,942,916)
Development Cost Charges	(795,400)	(795,400)	(795,400)	(795,400)	(795,400)
Accumulated Surplus	0	0	0	0	0
Total Revenue	(22,573,982)	(23,760,591)	(26,385,325)	(26,868,252)	(27,275,838)
Expenditures					
Salaries and Wages	1,427,896	1,479,157	1,532,259	1,587,267	1,642,345
Internal Equipment	0	0	0	0	0
Material and Other	9,528,362	9,718,929	9,913,308	10,111,574	10,313,805
Contract Services	0	476,000	476,000	493,088	510,198
Debt Interest	2,838,890	4,586,506	7,841,954	10,519,185	11,688,491
Debt Principal	3,948,472	3,948,467	5,606,386	7,484,890	8,800,723
Internal Allocations	213,000	213,000	213,000	213,000	213,000
Interdepartment Transfer	213,000	213,000	213,000	213,000	213,000
Interfund Transfer	0	0	0	0	0
Transfer to Funds	16,512,023	15,711,623	15,741,123	14,828,703	14,847,670
Special (Stat Reserve) Funds	15,240,623	14,440,223	14,469,723	14,492,303	14,511,270
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	1,271,400	1,271,400	1,271,400	336,400	336,400
Total Expenditures	34,468,643	36,133,682	41,324,030	45,237,707	48,016,232
Net Operating Expenditures		12,373,091	14,938,705	18,369,455	20,740,395

Operating Summary - Airport & Utility Funds Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Parcel Tax	(3,291,225)	(3,244,478)	(3,083,644)	(2,736,281)	(2,501,319)
Fees and Charges	(91,177,400)	(91,844,577)	(97,638,045)	(101,339,079)	(103,577,037)
Sales of Service	(88,815,650)	(91,697,147)	(97,489,666)	(101,189,732)	(103,426,703)
Other	0	0	0	0	0
User Fees	(2,361,750)	(147,430)	(148,379)	(149,347)	(150,334)
Other Revenue	(3,198,246)	(9,175,787)	(8,945,437)	(5,651,718)	(5,668,776)
Interest	(847,812)	(2,577,593)	(2,954,780)	(2,875,525)	(2,850,193)
Grants	(277,839)	(4,027,840)	(3,378,679)	(121,996)	(121,996)
Other	0	(584,854)	(594,153)	(602,887)	(611,749)
Interdepartment Transfer	(1,168,535)	(1,096,240)	(1,128,565)	(1,162,050)	(1,195,578)
Transfers from Funds	(7,402,110)	(3,948,590)	(6,630,040)	(6,837,437)	(20,212,068)
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(7,402,110)	(3,948,590)	(6,630,040)	(6,837,437)	(20,212,068)
Total Revenue	(105,068,981)	(108,213,433)	(116,297,167)	(116,564,516)	(131,959,200)
Expenditures					
Salaries and Wages	16,934,208	18,564,682	19,133,476	20,035,512	20,651,753
Internal Equipment	1,944,067	1,995,698	2,035,612	2,076,324	2,117,850
Material and Other	22,988,342	15,088,886	16,275,181	18,149,884	18,696,242
Contract Services	1,966,270	8,545,939	8,652,407	8,839,521	8,934,080
Debt Interest	1,141,947	1,268,230	2,215,050	3,060,629	4,095,317
Debt Principal	2,970,112	2,960,828	3,457,251	5,853,064	5,528,774
Internal Allocations	6,728,500	5,531,238	5,756,265	5,839,756	5,985,068
Interdepartment Transfer	5,487,554	3,128,695	3,088,695	3,088,695	3,088,695
Interfund Transfer	1,240,946	2,402,543	2,667,570	2,751,061	2,896,373
Transfer to Funds	38,671,835	42,340,783	40,971,718	35,073,726	35,818,816
Special (Stat Reserve) Funds	198,460	198,460	198,460	198,460	198,460
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	38,473,375	42,142,323	40,773,258	34,875,266	35,620,356
Total Expenditures	93,345,281	96,296,284	98,496,960	98,928,416	101,827,900
	(11 722 700)	(11 017 149)	(17 800 207)	(17 626 100)	(20 121 201)

2023 Operating expenditure by Airport & Utility funds

Airport Fund

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue					
Parcel Tax	0	0	0	0	0
Fees and Charges	(50,939,660)	(51,499,134)	(55,275,173)	(56,862,720)	(56,862,720)
Sales of Service	(48,624,410)	(51,499,134)	(55,275,173)	(56,862,720)	(56,862,720)
User Fees	(2,315,250)	U (5.007.005)			U (1.520.462)
Other Revenue	(247,730)	(5,087,805)	(4,/5/,485)	(1,529,462)	(1,529,462)
Grants	(132,230) (115,500)	(1,222,305) (3,865,500)	(1,491,985) (3,265,500)	(1,413,962)	(1,413,962) (115,500)
Other	(115,500)	(3,803,300)	(3,203,300)	(113,300)	(113,500)
Interdeportment Transfer	0	0	0	0	0
Transfers from Funds	(5 702 810)	(2 700 141)			U (F 218 001)
Franklers Hollin Folias	(5,705,810)	(2,709,141)	(4,562,115)	(5,775,500)	(5,218,091)
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	(F 702 810)	(2 700 1 11)	U (4 592 115)		U (F. 218.001)
Accomulated Surplus	(5,703,810)	(2,709,141)	(4,582,115)	(5,773,566)	(5,218,091)
Total Revenue	(56,891,200)	(59,296,081)	(64,614,774)	(64,165,749)	(63,610,273)
Expenditures					
Salaries and Wages	6,732,001	7,889,000	8,074,000	8,586,000	8,804,943
Internal Equipment	32,350	0	0	0	0
Material and Other	13,027,080	5,101,485	5,909,843	7,442,430	7,617,240
Contract Services	1,141,860	7,691,933	7,767,742	7,923,097	8,124,856
Debt Interest	584,250	711,650	1,439,650	1,788,500	1,568,000
Debt Principal	1,905,288	1,897,191	2,500,809	4,707,124	4,147,087
Internal Allocations	1,733,489	2.362.727	2.627.754	2.711.245	2.856.557
Interdepartment Transfer	1,685,159	0	0	0	0
Interfund Transfer	48,330	2,362,727	2,627,754	2,711,245	2,856,557
Transfer to Funds	31,734,882	33,642,094	36,294,976	31,007,353	30,491,590
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	31,734,882	33,642,094	36,294,976	31,007,353	30,491,590
Total Expenditures	56,891,200	59,296,080	64,614,774	64,165,748	63,610,273
Net Operating Expenditures	0	0	0	0	0
Surplus/(Deficit) (Included Above)	26,031,072	30,932,953	31,712,861	25,233,787	25,273,499
Nata Tatala managerata dal dua ta mang l'					

Note: Totals may not add due to rounding.

The Surplus/(Deficit) is the overall surplus/(deficit) budgeted for the fund during the year.

Water Fund

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
Revenue					
Parcel Tax	(2,051,046)	(2,256,609)	(2,281,482)	(2,306,008)	(2,330,895)
Fees and Charges	(18,649,740)	(18,375,982)	(19,621,419)	(20,935,663)	(22,346,164)
Sales of Service	(18,603,240)	(18,328,552)	(19,573,040)	(20,886,316)	(22,295,830)
User Fees	(46,500)	(47,430)	(48,379)	(49,347)	(50,334)
Other Revenue	(665,765)	(841,125)	(851,385)	(861,022)	(870,800)
Grante	(401,440)	(60,446)	(61,407)	(62,310)	(03,220)
Other	0	U (584 854)	U (50/ 152)	U (602 887)	0 (611 7/9)
Interdepartment Transfer	(264 325)	(195 825)	(195 825)	(195 825)	(195 825)
Transfers from Funds	(204,323)	(195,825)	(195,825)	(195,825)	(195,825)
Special (Stat Pasanya) Funds	(1,197,800)	(880,749)	(1,009,223)	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	U (1 107 800)	U (880 740)	U (1 690 225)	0	0
Accomulated Surplus	(1,197,800)	(880,749)	(1,689,225)	0	0
Total Revenue	(22,564,351)	(22,354,465)	(24,443,511)	(24,102,693)	(25,547,859)
Expenditures					
Salaries and Wages	4,741,220	4,962,448	5,140,600	5,318,148	5,502,688
Internal Equipment	737,767	791,384	807,212	823,356	839,823
Material and Other	5.234.697	5.135.789	5.334.416	5.495.922	5.686.630
Contract Services	155.500	161.082	166.865	172.855	39.853
Deht Interest	275 752	274 635	274 106	274 106	274 106
Debt Bringing	275,752	274,033	274,100	257,100	274,100
	2 010 200	557,714	337,003	337,003	1 422 000
	2,818,290	1,443,090	1,423,090	1,423,090	1,423,090
Interdepartment Transfer	2,028,974	1,403,274	1,383,274	1,383,274	1,383,274
Interfund Transfer	/89,316	39,816	39,816	39,816	39,816
I ransfer to Funds	3,882,226	3,543,336	3,535,453	3,671,913	4,932,766
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	3,882,226	3,543,336	3,535,453	3,671,913	4,932,766
Total Expenditures	18,204,351	16,669,478	17,038,745	17,536,393	19,055,959
Net Operating Expenditures	(4,360,000)	(5,684,987)	(7,404,766)	(6,566,300)	(6,491,900)
Surplus/(Deficit) (Included Above)	386,186	(872,249)	(1,689,225)	138,855	1,399,164

Note: Totals may not add due to rounding.

The Net Operating Expenditures total is the amount of funding required for capital expenditures in the specific year. The Surplus/(Deficit) is the overall surplus/(deficit) budgeted for the fund during the year.

Wastewater Fund

Revenues and Expenditures by Year

	2023	2024	2025	2026	2027
_					
Revenue	(4, 2, 42, 4, 70)	(007.000)	(222.4.52)	(400.070)	
Parcel Tax	(1,240,179)	(987,869)	(802,162)	(430,273)	(170,424)
Fees and Charges	(21,588,000)	(21,969,461)	(22,741,453)	(23,540,696)	(24,368,153)
Sales of Service	(21,588,000)	(21,869,461)	(22,641,453)	(23,440,696)	(24,268,153)
Other User Foos	0	(100,000)	(100,000)	(100.000)	(100,000)
Other Payanua	U (2 294 751)	(100,000)	(100,000)	(100,000)	(100,000)
Interest	(2,204,731) (314 142)	(3,240,837)	(3,330,307)	(3,201,234)	(3,208,314)
Grants	(162.339)	(162.340)	(113.179)	(6,496)	(1,373,005)
Other	0	0	0	0	(0,120,
Interdepartment Transfer	(904,210)	(900,415)	(932,740)	(966,225)	(999,753)
Transfers from Funds	(500,500)	(358,700)	(358,700)	(1,063,871)	(14,993,977)
Special (Stat Reserve) Funds	0	0	0	0	0
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	(500,500)	(358,700)	(358,700)	(1,063,871)	(14,993,977)
Total Revenue	(25,613,430)	(26,562,887)	(27,238,882)	(28,296,074)	(42,801,068)
Expenditures					
Salaries and Wages	5,460,987	5,713,234	5,918,876	6,131,364	6,344,122
Internal Equipment	1,173,950	1,204,314	1,228,400	1,252,968	1,278,027
Material and Other	4,726,565	4,851,612	5,030,922	5,211,532	5,392,372
Contract Services	668,910	692,924	717,800	743,569	769,371
Debt Interest	281,945	281,945	501,294	998,023	2,253,211
Debt Principal	705,925	705,923	599,439	788,937	1,024,683
Internal Allocations	2,176,721	1,725,421	1,705,421	1,705,421	1,705,421
Interdepartment Transfer	1,773,421	1,725,421	1,705,421	1,705,421	1,705,421
Interfund Transfer	403,300	0	0	0	0
Transfer to Funds	3,054,727	5,155,353	1,141,289	394,460	394,460
Special (Stat Reserve) Funds	198,460	198,460	198,460	198,460	198,460
Development Cost Charges	0	0	0	0	0
Accumulated Surplus	2,856,267	4,956,893	942,829	196,000	196,000
Total Expenditures	18,249,730	20,330,727	16,843,442	17,226,274	19,161,668
Net Operating Expenditures	(7,363,700)	(6,232,160)	(10,395,440)	(11,069,800)	(23,639,400)
Surplus/(Deficit) (Included Above)	2,660,267	4,760,893	746,829	(705,171)	(13,930,106)

Note: Totals may not add due to rounding.

The Net Operating Expenditures total is the amount of funding required for capital expenditures in the specific year. The Surplus/(Deficit) is the overall surplus/(deficit) budgeted for the fund during the year.

Capital Summary - General Fund

Cost Centre		2023	2024	2025	2026	2027
300	Real Estate & Parking	4,279,300	4,878,812	4,726,924	6,345,454	2,908,048
301	Buildings	18,591,100	183,144,959	60,996,272	3,562,238	3,139,229
302	Parks	53,714,100	24,194,884	29,427,687	24,641,418	27,843,913
304	Transportation	58,689,700	19,337,308	25,148,311	27,579,738	37,262,043
305	Solid Waste	17,340,200	13,510,000	10,360,000	4,460,000	2,910,000
306	Storm Drainage	16,840,200	7,161,737	7,524,195	7,351,015	1,504,350
308	Information Services	4,316,700	2,992,408	1,147,175	998,617	794,024
310	Vehicle & Mobile Equipment	8,723,300	4,546,300	5,167,400	5,279,000	5,177,800
311	Fire	3,927,600	823,768	357,141	151,648	3,884,776
		186,422,200	260,590,176	144,855,105	80,369,128	85,424,183
Funding	Sources:					
	General Taxation	15,131,800	16,255,000	17,453,000	18,727,000	19,981,000
	Surplus/Reserves	100,388,900	58,289,701	41,650,278	30,637,378	29,732,181
	Development Cost Charges	51,664,600	20,873,542	29,966,849	25,924,685	33,497,763
	Debenture/Borrowing	8,507,400	161,039,504	50,989,600	0	0
	Federal/Provincial Funding*	8,185,700	2,337,049	2,825,678	2,788,745	272,000
	Dev/Comm/Other Contributions	1,391,000	877,480	1,200,100	1,424,920	1,352,839
	Utility Revenue	1,152,800	917,900	769,600	866,400	588,400
		186,422,200	260,590,176	144,855,105	80,369,128	85,424,183
Total Fiv	ve-Year Capital Program					757,660,792

Total Five-Year Capital Program

* 10-Year Capital Plan only includes confirmed Federal and Provincial Funding Note: Totals may not add due to rounding.

General Fund Capital Funding 2023 to 2027

The below graph summarizes the overall capital plan funding over the next five years.

Capital Funding Summary by Cost Centre

General Fund 2023 to 2027 - Taxation

Cost				General Fund	
Centre		Total \$	%	Taxation	%
300	Real Estate & Parking	23,138,538	3	5,828,838	7
301	Buildings	269,433,798	36	12,978,011	15
302	Parks	159,822,002	21	27,523,059	31
304	Transportation	168,017,100	22	29,573,111	34
305	Solid Waste	48,580,200	6	0	0
306	Storm Drainage	40,381,497	5	6,877,545	8
308	Information Services	10,248,924	2	4,657,937	5
310	Vehicle & Mobile Equipment	28,893,800	4	109,300	0
311	Fire	9,144,933	1	0	0
Total Fiv	ve-Year Program	757,660,792	100.0	87,547,800	100.0

Real Estate & Parking Capital

Plan No. Plan Description

L1 General Land

Annual allocation for the purchase of land for general purposes. This may allow for acquiring properties at less than fair market value, creating land assembly opportunities, creating a revenue generating land bank and providing trade potential.

L2 Road and Sidewalk Land Acquisition To fund the purchase of land required for the widening of roads to accommodate road improvements and/or sidewalks.

L3 Parking Infrastructure

Funding to renew parking infrastructure and to invest in efficient parking management technology.

L4 Strategic Land Redevelopment

Funding to redevelop City owned land to improve public benefit and encourage economic development.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
L1	General Land	2,109,400	2,445,253	2,489,058	2,256,866	2,283,840	11,584,417
L2	Road and Sidewalk Land Acquisition	25,000	142,559	127,866	68,588	51,208	415,221
L3	Parking Infrastructure	1,894,900	2,041,000	1,860,000	3,770,000	323,000	9,888,900
L4	Strategic Land Redevelopment	250,000	250,000	250,000	250,000	250,000	1,250,000
		4,279,300	4,878,812	4,726,924	6,345,454	2,908,048	23,138,538

Funding Sources						
General Taxation	983,600	1,332,812	1,361,924	1,070,454	1,080,048	5,828,838
Surplus/Reserves	3,295,700	3,291,000	3,110,000	5,020,000	1,573,000	16,289,700
Development Cost Charges	0	0	0	0	0	0
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	0	0	0	0	0	0
Dev/Comm/Other Contributions	0	255,000	255,000	255,000	255,000	1,020,000
Utility Revenue	0	0	0	0	0	0
	4,279,300	4,878,812	4,726,924	6,345,454	2,908,048	23,138,538

Building Capital

Plan No. Plan Description B1 **Parks and Recreation Buildings** An allocation for the development of new Parks and Recreation buildings as well as the redevelopment and expansion of existing ones in various locations throughout the City to keep pace with the increasing demand due to population growth and emerging trends. This B2 **Community and Cultural Buildings** An allocation for the development of new community and cultural buildings as well as the redevelopment, renewal and expansion of existing ones. This category includes the theaters, libraries, senior centres, community halls, art gallery, museums and the RCA. **B3 Civic/Protective Service Buildings** Funding to support renewal, replacement and cost of new Protective Services buildings which include firehalls, police stations and City Hall. Β4 **Transportation and Public Works Buildings** Funding to support renewal, replacement and new construction of new Transportation and Public Works Buildings throughout the City to keep pace increasing demand due to population growth and emerging trends. This category includes Public Works Yard, parkades, cemetery **Heritage Buildings** B5 Funding for the restoration of City-owned heritage buildings. B6 **Capital Opportunities and Partnerships** Funding for special projects including partnerships with the School District on community space as part of new school construction as well as funding to allow for capital projects that were not envisioned during the plan development, including partnerships. Building Renewal, Rehabilitation & Infrastructure Upgrades B7 An allocation for major repairs or replacement of existing building infrastructure such as roofs, windows, mechanical systems, lighting, electrical and water services, hazardous material abatement, and other major maintenance items. Plan No. Plan Description 2027 Five-Year Total 2023 2024 2025 2026

B1	Parks and Recreation Buildings	6,475,800	2,427,600	36,762,400	1,072,250	780,000	47,518,050
B2	Community and Cultural Buildings	1,100,800	166,045,354	13,695,200	0	0	180,841,354
B3	Civic/Protective Service Buildings	2,939,400	12,348,800	8,092,000	0	0	23,380,200
B4	Transportation and Public Works Buildings	130,000	0	0	0	0	130,000
B5	Heritage Buildings	0	0	0	0	0	0
B6	Capital Opportunities and Partnerships	1,000,000	0	0	0	0	1,000,000
B7	Building Renewal, Rehab. & Infra. Upgrades	6,945,100	2,323,205	2,446,672	2,489,988	2,359,229	16,564,194
		18,591,100	183,144,959	60,996,272	3,562,238	3,139,229	269,433,798

	18,591,100	183,144,959	60,996,272	3,562,238	3,139,229	269,433,798
Utility Revenue	0	0	0	0	0	0
Dev/Comm/Other Contributions	0	0	0	0	0	0
Federal/Provincial Funding	0	0	0	0	0	0
Debenture/Borrowing	0	161,039,504	50,989,600	0	0	212,029,104
Development Cost Charges	0	0	0	0	0	0
Surplus/Reserves	15,700,100	19,163,451	7,283,267	1,310,933	968,932	44,426,683
General Taxation	2,891,000	2,942,004	2,723,405	2,251,305	2,170,297	12,978,011
Funding Sources						

Parks Capital

Plan No. Plan Description **DCC Parkland Acquisition** P1 Park acquisition program based on the residential growth in the City for the purchase of parkland (Neighbourhood, Community, Recreation and City-wide level parks) under the Development Cost Charge program (DCC). Funding is primarily allocated from developer revenue with general taxation covering both the assist factor and infill/conversion units and Land Use Contracts not required to pay DCC's. P2 Natural Area Parkland Acquisition Park acquisition program for the purchase of Natural Areas not attributed to the DCC program. Neighbourhood Park Development P3 An allocation to cover the development of neighbourhood level parks including off-site costs related to park development, but does not include buildings. **Community Park Development** P4 An allocation to cover the development of community level parks including off-site costs related to park development, but does not include buildings. P5 **Recreation Park Development** An allocation to cover the development of recreation level parks including off-site costs related to park development, but does not include buildings City-wide Park Development P6 An allocation to cover the development of city-wide level parks including off-site costs related to park development, but does not include buildings. Linear/Natural Area Park Development P7 An allocation to cover the development of natural areas and linear parks/trails. P8 Park Renewal, Rehabilitation & Infrastructure Upgrades An allocation for major repairs or replacement of existing park infrastructure such as sidewalks, hard-surfaced trails, parking lots, sport courts, lighting, electrical and water services, irrigation, fencing, bridges and other major structures. P9 **Capital Opportunities Partnership** An allocation for various strategic investments into the park and open space system as well as funding to allow for capital projects that were not envisioned during the plan development, including partnerships. P10 Urban Streetscape and Urban Centres Development and Renewal An allocation for urban centre improvements, enhanced streetscapes and walkways, and other urban spaces that are not defined parks.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
P1	DCC Parkland Acquisition	19,656,300	16,936,291	12,802,000	16,936,290	12,802,000	79,132,881
P2	Natural Area Parkland Acquisition	0	0	0	0	0	0
P3	Neighbourhood Park Development	1,144,800	2,702,604	1,946,193	2,299,737	1,902,000	9,995,334
P4	Community Park Development	14,168,600	0	0	0	0	14,168,600
P5	Recreation Park Development	11,813,000	197,689	2,886,246	0	4,839,376	19,736,311
P6	City-wide Park Development	2,072,600	3,082,900	8,584,398	3,985,491	5,060,637	22,786,026
P7	Linear/Natural Area Park Development	2,652,000	292,400	1,713,850	218,900	218,900	5,096,050
P8	Park Renew., Rehab. & Upgrades	1,979,500	983,000	1,495,000	1,201,000	3,021,000	8,679,500
P9	Capital Opportunities Partnership	192,400	0	0	0	0	192,400
P10	Urban Streetsc. and Centres Dev & Renew	34,900	0	0	0	0	34,900
		53,714,100	24,194,884	29,427,687	24,641,418	27,843,913	159,822,002

Funding Sources						
General Taxation	5,980,900	4,804,485	5,160,279	4,659,581	6,917,814	27,523,059
Surplus/Reserves	12,466,000	2,578,047	1,446,755	2,028,657	2,795,628	21,315,087
Development Cost Charges	34,193,000	16,812,352	22,317,553	17,953,180	18,130,471	109,406,556
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	1,074,200	0	0	0	0	1,074,200
Dev/Comm/Other Contributions	0	0	503,100	0	0	503,100
Utility Revenue	0	0	0	0	0	0
	53.714.100	24.194.884	29.427.687	24.641.418	27.843.913	159.822.002

Transportation Capital

Plan No. Plan Description Τ1 DCC Roads Allocation for design, land and construction costs associated with DCC Road projects. Т2 **DCC Roads - Active Transportation** Allocation for design, land and construction costs associated with DCC Active Transportation projects. General taxation to cover 77.7% тз Non-DCC Roads Infrastructure upgrades which are not part of the 20 Year Servicing Plan and Financing Strategy (collectors and local roads) and City initiated projects to upgrade streets to full urban standards including drainage, fillet paving, sidewalks and landscaped boulevards. т4 **Transportation System Renewal** Allocation for overlay and other processes, including micro asphalting, for rehabilitation of City roads. Also includes renewal of curb and gutter, bike paths, retaining walls, handrails and stairways Т5 **Bicycle Network** Allocation for bike network system additions and improvements. т6 Sidewalk Network Allocation required to complete the Non-DCC portion of the sidewalk network. т7 Safety and Operational Improvements Allocation to cover field reviews and capital improvements for safety improvements or to improve operational efficiency. This will include projects such as left turn bays, traffic control changes, safety barriers, signs, markings, handicap access improvements and retrofit medians. т8 **Traffic Control Infrastructure** This program is for construction of new traffic signal control infrastructure that is not part of the DCC program. This includes new traffic signals and pedestrian activated traffic signals, installation of new communication for the traffic signals system and where new development occurs install conduit for future traffic signals. Program also includes renewal of existing traffic signals. Т9 **Transit Facilities** Construction of new and renewal of existing transit facilities, bus pullouts and shelters. Plan No. Plan Description 2023 2024 2025 2026 2027 Five-Year Total Development Cost Charge Roads Τ1 23,704,800 3,860,068 9,694,428 9,384,818 20,395,885 67,039,999

		58,689,700	19,337,308	25,148,311	27,579,738	37,262,043	168,017,100
Т9	Transit Facilities	1,995,400	310,000	300,000	1,567,000	2,574,800	6,747,200
Т8	Traffic Control Infrastructure	758,000	0	0	0	0	758,000
T7	Safety and Operational Improvements	1,229,200	410,000	370,000	430,000	380,000	2,819,200
Т6	Sidewalk Network	5,313,200	3,200,000	975,000	1,075,000	1,075,000	11,638,200
T5	Bicycle Network	1,634,000	580,000	818,000	1,300,000	910,000	5,242,000
T4	Transportation System Renewal	6,343,800	4,962,440	9,400,883	6,488,720	6,409,253	33,605,096
Т3	Non-DCC Roads	2,527,600	1,120,000	970,000	970,000	770,000	6,357,600
Т2	DCC Roads - Active Transportation	15,183,700	4,894,800	2,620,000	6,364,200	4,747,105	33,809,805

Funding Sources						
General Taxation	3,382,300	4,291,987	4,728,619	8,939,070	8,231,135	29,573,111
Surplus/Reserves	27,193,500	10,411,651	12,378,396	9,549,243	12,615,777	72,148,567
Development Cost Charges	17,471,600	4,061,190	7,649,296	7,971,505	15,367,292	52,520,883
Debenture/Borrowing	7,117,800	0	0	0	0	7,117,800
Federal/Provincial Funding	2,263,200	0	0	0	0	2,263,200
Dev/Comm/Other Contributions	1,261,300	572,480	392,000	1,119,920	1,047,839	4,393,539
Utility Revenue	0	0	0	0	0	0
	58,689,700	19,337,308	25,148,311	27,579,738	37,262,043	168,017,100
Solid Waste Capital

Plan No.	Plan Description							
SW1	Equipment							
	Funding for new equipment and replacemen	t of existing equip	ment.					
SW2	Site Improvement							
	Funding for site improvements like buildings	, roads, landscapir	ng and fencing.					
SW3	Gas Management							
	Required for design, installation and extension	on of gas manager	nent system an	d utilization of g	gas to energy.			
SW4	Leachate Management							
	Required for installation and extension of leachate collection, treatment, recirculation network and pump facilities.							
SW5	Drainage & Groundwater Management							
	Funding for design and installation of surface and groundwater systems, piping, storage and pump stations.							
SW6	Recycling & Waste Management	-						
	Facilities and infrastructure to support waste	management and	recycling inclu	ding compostin	g, waste separat	ion and diver	sion, last	
SW7	Landfill Area Development	-			-			
	Required for planning, design and developm	ent of areas for fill	ing to maximize	e available space	2.			
SW8	Closure & Reclamation		-					
	Required for design and construction of final	cover system and	closure infrastr	ucture and recla	amation of distu	rbed areas to	natural state.	
SW9	Solid Waste Renewal							
	Renewal and replacement of site infrastructu	re and equipment						
Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total	
SW1	Equipment	400,000	950,000	600,000	650,000	400,000	3,000,000	
SW2	Site Improvement	6,202,600	7,600,000	100,000	1,100,000	100,000	15,102,600	
SW3	Gas Management	509,800	450,000	450,000	450,000	450,000	2,309,800	
SW4	Leachate Management	100,000	200,000	1,000,000	0	0	1,300,000	
SW5	Drainage & Groundwater Management	1,130,000	1,400,000	4,900,000	0	500,000	7,930,000	

		17,340,200	13,510,000	10,360,000	4,460,000	2,910,000	48,580,200
SW9	Solid Waste Renewal	918,900	460,000	460,000	1,960,000	460,000	4,258,900
SW8	Closure & Reclamation	0	250,000	800,000	0	1,000,000	2,050,000
SW7	Landfill Area Development	7,873,000	2,200,000	2,050,000	0	0	12,123,000
SW6	Recycling & Waste Management	205,900	0	0	300,000	0	505,900
SW5	Drainage & Groundwater Management	1,130,000	1,400,000	4,900,000	0	500,000	7,930,000
SW4	Leachate Management	100,000	200,000	1,000,000	0	0	1,300,000
SW3	Gas Management	509,800	450,000	450,000	450,000	450,000	2,309,800

Funding Sources						
General Taxation	0	0	0	0	0	0
Surplus/Reserves	17,134,300	13,110,000	10,360,000	4,460,000	2,910,000	47,974,300
Development Cost Charges	0	0	0	0	0	0
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	0	0	0	0	0	0
Dev/Comm/Other Contributions	79,700	0	0	0	0	79,700
Utility Revenue	126,200	400,000	0	0	0	526,200
	17,340,200	13,510,000	10,360,000	4,460,000	2,910,000	48,580,200

Storm Drainage Capital

Plan No. Plan Description

D1 Hydraulic Upgrading Program

Estimated expenditures to cover hydraulic improvements to the storm drainage system. This non-exhaustive list of hydraulic capacity projects are selected based on grant availability, contributing area, support by studies, analyses, and/or reoccurring operational issues. Flood protection projects are also included in this category.

D2 Storm Drainage Quality Program

This program includes stormwater quality projects that reduce urban and agricultural stormwater pollution throughout the City. Projects are selected based on contemporary water quality monitoring, higher risk subcatchments, and provincial outfall water quality targets. The 2040 Official Community Plan and the draft Area Based Water Management Plan identify relatively high risks and many opportunities for addressing stormwater quality in the City. These projects ultimately support the City's drinking water filtration deferral strategy supported by Interior Health. This category is expected to evolve regularly based on lessons learned, completed projects, and increases to stormwater quality levels of service.

D3 Storm Water Renewal

This program provides for the renewal and replacement of pipes, outfalls, pump stations, treatment facilities, and stormwater ponds.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
D1	Hydraulic Upgrading Program	16,091,300	6,592,623	7,064,195	6,971,863	960,660	37,680,641
D2	Storm Drainage Quality Program	168,400	349,114	120,000	0	0	637,514
D3	Storm Water Renewal	580,500	220,000	340,000	379,152	543,690	2,063,342
		16,840,200	7,161,737	7,524,195	7,351,015	1,504,350	40,381,497
Funding :	sources						
	General Taxation	999,800	1,800,490	2,381,598	857,974	837,683	6,877,545
	Surplus/Reserves	10,600,700	3,024,198	2,316,919	3,704,296	394,667	20,040,780
	Development Cost Charges	0	0	0	0	0	0
	Debenture/Borrowing	0	0	0	0	0	0
	Federal/Provincial Funding	4,848,300	2,337,049	2,825,678	2,788,745	272,000	13,071,772
	Dev/Comm/Other Contributions	0	0	0	0	0	0
	Utility Revenue	391,400	0	0	0	0	391,400
		16,840,200	7,161,737	7,524,195	7,351,015	1,504,350	40,381,497

Information Services Capital

Plan No. Plan Description

I1 Front Office Equipment

Information Services have been utilizing a 5 year replacement cycle for desktop equipment which includes computers, printers, monitors, scanners and software. It also includes work group equipment such as large format plotters and copiers.

I2 Server & Data Storage

To provide equipment and software in City Hall data centre to support the various systems in place for staff and includes equipment for the Fire Hall data centre. Included are servers, disk storage, tape backups and the related software.

13 Major System Projects

Major systems projects include Class Registration Software Replacement and Online Platform Redevelopment.

I4 Communications Systems

To provide a networking environment that interconnects the various places and spaces used by City staff, this budget will support the expansion of the City's fibre optic ring which will reduce need for leased communication lines. Network components that have reached the end of their serviceable life will also be replaced.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
11	Front Office Equipment	503,300	454,839	612,108	345,309	320,568	2,236,124
12	Server & Data Storage	80,000	60,000	53,330	289,180	126,251	608,761
13	Major System Projects	2,015,900	2,291,114	170,655	258,517	150,726	4,886,912
14	Communications Systems	1,717,500	186,455	311,082	105,611	196,479	2,517,127
		4,316,700	2,992,408	1,147,175	998,617	794,024	10,248,924

Funding Sources						
General Taxation	784,900	1,083,221	1,097,175	948,617	744,024	4,657,937
Surplus/Reserves	2,074,300	1,859,187	0	0	0	3,933,487
Development Cost Charges	0	0	0	0	0	0
Debenture/Borrowing	1,389,600	0	0	0	0	1,389,600
Federal/Provincial Funding	0	0	0	0	0	0
Dev/Comm/Other Contributions	50,000	50,000	50,000	50,000	50,000	250,000
Utility Revenue	17,900	0	0	0	0	17,900
	4,316,700	2,992,408	1,147,175	998,617	794,024	10,248,924

Vehicle & Mobile Equipment Capital

Plan Plan Description

V1 Additional Vehicles / Equipment

This budget supports the addition of new vehicles and equipment to the corporate fleet in response to increased service demand from population growth or additional services.

V2 Vehicle / Equipment Renewal

As part of the City's vehicle replacement program, vehicles at the end of their service life cycles are replaced using funds from the equipment replacement reserve. Cars and light trucks have an average design life of 10 years.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
V1	Additional Vehicles / Equipment	517,000	996,300	1,257,400	1,179,000	887,800	4,837,500
V2	Vehicle / Equipment Renewal	8,206,300	3,550,000	3,910,000	4,100,000	4,290,000	24,056,300
		8,723,300	4,546,300	5,167,400	5,279,000	5,177,800	28,893,800
Funding S	ources						
	General Taxation	109,300	0	0	0	0	109,300
	Surplus/Reserves	7,996,700	4,028,400	4,397,800	4,412,600	4,589,400	25,424,900
	Development Cost Charges	0	0	0	0	0	0
	Debenture/Borrowing	0	0	0	0	0	0
	Federal/Provincial Funding	0	0	0	0	0	0
	Dev/Comm/Other Contributions	0	0	0	0	0	0
	Utility Revenue	617,300	517,900	769,600	866,400	588,400	3,359,600
		8.723.300	4.546.300	5.167.400	5.279.000	5.177.800	28.893.800

Fire Capital

Plan No. Plan Description

F1 Vehicle / Equipment Renewal

As part of the Fire Departments vehicle/equipment replacement program, vehicles and equipment at the end of their service life cycles are replaced using funds from the Fire Departments equipment replacement reserve.

F2 Additional Vehicles / Equipment

This budget supports the addition of new vehicles and equipment to the Fire Department in response to increased service demand from population growth.

F3 Communications Systems

To provide for radio system improvements or replacement, including dispatch requirements.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
F1	Vehicle / Equipment Renewal	3,166,100	697,546	0	0	3,221,796	7,085,442
F2	Additional Vehicles / Equipment	127,000	91,722	65,341	66,648	67,980	418,691
F3	Communications Systems	634,500	34,500	291,800	85,000	595,000	1,640,800
		3,927,600	823,768	357,141	151,648	3,884,776	9,144,933

Funding Sources						
General Taxation	0	0	0	0	0	0
Surplus/Reserves	3,927,600	823,768	357,141	151,648	3,884,776	9,144,933
Development Cost Charges	0	0	0	0	0	0
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	0	0	0	0	0	0
Dev/Comm/Other Contributions	0	0	0	0	0	0
Utility Revenue	0	0	0	0	0	0
	3,927,600	823,768	357,141	151,648	3,884,776	9,144,933

Capital Summary - Airport & Utility Funds

Cost Centre		2023	2024	2025	2026	2027
312	Airport	139,065,000	9,865,400	23,154,600	14,129,200	16,754,500
313	Water	10,501,400	8,013,800	11,229,800	9,142,800	8,713,800
314	Wastewater	31,219,500	10,264,300	25,085,400	26,087,000	62,205,800
		180,785,900	28,143,500	59,469,800	49,359,000	87,674,100
Fundin	g Sources:					
	Water Utility Operating	4,360,000	5,684,987	7,404,766	6,566,300	6,491,900
	Wastewater Utility Operating	7,363,700	6,232,160	10,395,440	11,069,800	23,639,400
	Reserves/Surplus	144,404,590	9,865,400	25,154,600	13,607,300	16,003,600
	Development Cost Charges	2,731,710	6,210,953	14,308,994	15,390,700	38,638,300
	Debenture Borrowing	0	0	0	0	0
	Federal/Provincial Contributions	21,105,300	0	0	521,900	2,750,900
	Dev/Comm/Other Contributions	820,600	150,000	2,206,000	2,203,000	150,000
		180,785,900	28,143,500	59,469,800	49,359,000	87,674,100
Total Fi	ve-Year Capital Program					405,432,300

Total Five-Year Capital Program

* 10-Year Capital Plan only includes confirmed Federal and Provincial Funding Note: Totals may not add due to rounding.

Utility Funds Capital Funding 2023 to 2027

The below graph summarizes the overall capital plan funding over the next five years.

Airport Capital

Plan No. Plan Description

A1 Airside

Funding for East Lands roads and servicing, stormwater infrastructure, and other small capital projects.

A2 Groundside

Funding for Airport roadways, hotel and parking development, rental car quick turnaround facility, land purchases, West Lands roads and servicing, and other small capital projects.

A3 Terminal

Funding for Airport terminal building renovations, technology, bridge upgrades, and other small capital projects.

A4 Airport Improvement Fees

Funding for the terminal expansion, Apron 1 South expansion, combined operations building, airside pavement rehabilitation, runway end safety area, airside equipment, and other capital projects.

Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total
A1	Airside	760,000	275,600	827,400	828,300	2,482,900	5,174,200
A2	Groundside	9,249,100	3,376,000	10,795,900	1,291,400	9,464,000	34,176,400
A3	Terminal	6,519,300	1,328,900	1,490,500	1,174,000	762,000	11,274,700
A4	Airport Improvement Fees	122,536,600	4,884,900	10,040,800	10,835,500	4,045,600	152,343,400
		139,065,000	9,865,400	23,154,600	14,129,200	16,754,500	202,968,700

Funding Sources:						
General Taxation	0	0	0	0	0	0
Surplus/Reserves	126,977,000	9,865,400	23,154,600	13,607,300	14,003,600	187,607,900
Development Cost Charges	0	0	0	0	0	0
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	11,806,000	0	0	521,900	2,750,900	15,078,800
Dev/Comm/Other Contributions	282,000	0	0	0	0	282,000
Utility Revenue	0	0	0	0	0	0
	139,065,000	9,865,400	23,154,600	14,129,200	16,754,500	202,968,700

Water Capital

Plan No.	Plan Description								
W1	DCC Pipes (Mains)								
	New water mains to accommodate grow	th.							
W2	12 DCC Booster Stations & PRVs								
	New booster stations & PRV's to accomm	odate growth.							
W3	DCC Water Treatment								
	New treatment capacity and facilities to a	accommodate growth	۱.						
W4	DCC Reservoirs & Filling Stations								
	New reservoirs and filling stations to acco	ommodate growth.							
W5	DCC Offsite & Oversize								
	The City's share of costs to oversize wate	r infrastructure and to	o do work in exc	ess of the deve	loper's own neec	ls.			
W6	Network and Facility Renewal								
	Renewal of existing water mains, booster stations, PRVs, water treatment systems, reservoirs and filling stations that has reached the end								
	of its service life.								
W7	Network and Facility Improvements								
	Network and facility improvements to meet current standards. Contributed assets and water meters that are needed to support								
	development and are funded from develo	pment.							
W8	Irrigation Network Improvements								
	Network and Facility Improvements to meet current standards. Fire protection, upper watershed infrastructure, well stations and								
	transmission mains are all included in this	irrigation network.							
Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total		
W1	DCC Pipes (Mains)	1,401,100	2,750,000	3,221,000	2,579,000	0	9,951,100		
W2	DCC Booster Stations & PRVs	0	0	0	0	0	0		
W3	DCC Water Treatment	0	0	0	0	0	0		
W4	DCC Reservoirs & Filling Stations	231,000	1,900,000	0	0	0	2,131,000		
14/5		E 4 E 200	1 42 000	1 4 2 0 0 0	1 4 2 . 0 2 2	1 12 000	4 4 3 9 5 9 9		

		10,501,400	8,013,800	11,229,800	9,142,800	8,713,800	47,601,600
W8	Irrigation Network Improvements	1,616,100	20,000	1,020,000	2,020,000	920,000	5,596,100
W7	Network and Facility Improvements	1,568,800	150,000	2,695,000	150,000	2,150,000	6,713,800
W6	Network and Facility Renewal	5,139,100	3,050,000	4,150,000	4,250,000	5,500,000	22,089,100
VV 5	DCC Offsile & Oversize	545,500	145,600	145,000	145,600	145,600	1,120,500

Funding Sources						
General Taxation	0	0	0	0	0	0
Surplus/Reserves	4,534,490	0	2,000,000	0	2,000,000	8,534,490
Development Cost Charges	1,456,910	2,178,813	1,675,034	2,426,500	71,900	7,809,157
Debenture/Borrowing	0	0	0	0	0	0
Federal/Provincial Funding	0	0	0	0	0	0
Dev/Comm/Other Contributions	150,000	150,000	150,000	150,000	150,000	750,000
Utility Revenue	4,360,000	5,684,987	7,404,766	6,566,300	6,491,900	30,507,953
	10,501,400	8,013,800	11,229,800	9,142,800	8,713,800	47,601,600

Wastewater Capital

WW6

Funding Sources:

Plan No.	Plan Description								
WW1	DCC Pipes (Mains)								
	New wastewater mains to support growth.								
WW2	DCC Lift Stations								
	New wastewater lift stations to support grow	vth.							
WW3	DCC Wastewater Treatment Facilities								
	New wastewater treatment facilities to supp	ort growth.							
WW4	DCC Oversize								
	The City's share of costs to oversize wastewa	ter infrastructure	and to do work	in excess of the	developer's ow	/n needs.			
WW5	Network and Facility Renewal								
	Renewal of existing wastewater mains, lift st	ations and existing	g treatment fac	ilities that have	reached the en	d of their servi	ce life.		
WW6	Network and Facility Improvements								
	Collection and facility improvements to meet current standards. Contributed assets that are needed to support development and are funded from development.								
Plan No.	Plan Description	2023	2024	2025	2026	2027	Five-Year Total		
WW1	DCC Pipes (Mains)	535,900	4,823,100	3,354,600	5,654,000	6,265,800	20,633,400		
WW2	DCC Lift Stations	2,982,000	221,200	1,990,800	2,053,000	0	7,247,000		
WW3	DCC Wastewater Treatment Facilities	434,200	0	14,320,000	12,760,000	50,120,000	77,634,200		
WW4	DCC Oversize	538,700	120,000	120,000	120,000	120,000	1,018,700		

5,000,000

10,264,300

4,032,140

6,232,160

10,264,300

100,000

0

0

0

0

0

5,200,000

25,085,400

12,633,960

2,056,000

10,395,440

25,085,400

100,000

0

0

0

0

5,400,000

26,087,000

12,964,200

2,053,000

11,069,800

26,087,000

100,000

0

0

0

0

5,600,000

62,205,800

38,566,400

23,639,400

62,205,800

100,000

0

0

0

0

0

33,763,200

14,565,500

154,862,000

12,893,100

69,471,500

9,299,300

4,497,600

58,700,500

154,862,000

0

0

12,563,200

14,165,500

31,219,500

12,893,100

1,274,800

9,299,300

7,363,700

31,219,500

388,600

0

0

Note: Totals may not add due to rounding.

WW5 Network and Facility Renewal

General Taxation

Surplus/Reserves

Utility Revenue

Development Cost Charges

Federal/Provincial Funding

Dev/Comm/Other Contributions

Debenture/Borrowing

Network and Facility Improvements

2023

FINANCIAL PLAN

Final Budget Volume Five-Year Financial Plan

April 24, 2023 Council Chambers

#kelownabudget Kelowna.ca/budget

Agenda

Priorities

- Proposed Final Budget tax demand
- Final Budget Operating requests
- Final Budget Capital requests
 - Taxation impacts
 - Five-Year Financial Plan (2023- 2027)

2023 Financial Plan – Priorities

Low tax rate
Infrastructure for the future
Community safety
Social wellness
Transportation
Digital transformation
Protecting our environment

2023 Preliminary Budget Volume

2023 Final Budget Volume

Emergent projects
 Required by Legislation

2023 Proposed tax demand

Preliminary gross tax demand	\$175.1M						
Final Budget Volume:							
General revenues	(397k)						
Operating requests	765k						
Capital requests	1.1M						
2023 Final gross tax demand	\$176.6M						
New construction revenue	(3.2M)						
Net property owner impact	3.78%						

Request: Downtown On Call and Clean Team Support Increase

Justification: The City of Kelowna works in collaboration with the Downtown Kelowna Business Association to maintain a safe and inviting environment in the downtown core. Budget is requested to increase the support for Downtown On Call and Downtown Clean Team.

Amount: \$54,000

Taxation\$54,000 Increase to Taxation Demand ongoingImpact:

Request: Insurance Premiums – Inflationary Increase

Justification: Budget is requested to cover inflationary increases in insurance premiums. Inflation on insurance premium rates in 2023 has been significant worldwide. Property insurance costs in particular increased as a result of higher building replacement costs due to inflation of materials and labour. The City of Kelowna insures \$1.1B of built infrastructure with coverage including liability, property, cybercrime and environmental impairment.

Amount: \$161,000

Taxation\$161,000 Increase to Taxation Demand one-timeImpact:

Operating Requests – General Fund

Request: Extreme Weather Response Program Funding

Justification: Budget is requested for the City of Kelowna to support vulnerable people throughout the community during extreme hot and cold weather events, for which there is no formal program or funding currently in place. These activities are separate from actions taken by the Regional Emergency Program. In 2022 the province formally asked all local governments in BC to work with community partners to have a community plan for heat domes and freezing cold conditions. Staff will monitor for grants and other funding sources as they become available to offset or supplement this funding. Amount: \$30,000

TaxationNo Taxation Impact

Impact:

Request: Security Services Enhancement - Additional Guard

Justification: Budget is requested for an additional seasonal security guard to support downtown from April through September. More support is needed to address growing security concerns during the early morning hours. Additional security presence at these times will reduce vandalism and misuse of washrooms amenities as well as improve asset protection.

2023 Base budget: \$1.02M

Amount: \$50,000

Taxation\$50,000 Increase to Taxation Demand ongoingImpact:

Request: Transmission of Taxes - BIA's and Other Governments

Justification: To establish the receipt and disbursement of taxes to Business Improvement Areas (BIA) and other taxing authorities (OTA's).

Amount: \$133,554,000

Request: FortisBC Operating Fee

Justification: This request is to adjust the franchise fee revenue due from FortisBC up to \$2,157,365 from the 2023 Preliminary budget amount of \$1,760,540. The fee is based on 3 per cent of the gross revenue for the provision and distribution of all gas consumed within the City of Kelowna during the 2022 calendar year.

Amount: \$396,800

Taxation\$396,800 Decrease to Taxation Demand ongoingImpact:

Request: Council Initiatives

Justification: Kelowna City Council is committed to working closely with residents, community partners and other levels of government to bring positive change. Council priorities and results identify where residents and City Council want to make a difference. Budget is requested for City Council to provide funding to promote and finance various initiatives that will contribute to this change.

Amount: \$500,000

Taxation\$500,000 Increase to Taxation Demand ongoingImpact:

Request: H2O Facility Air Handling Renewal

Justification: Air Handling units at the H2O Adventure & Fitness Centre are approaching the end of their useful life. Immediate service work and replacement is recommended to ensure building operations are not impacted. In consideration of supply chain issues, final work is anticipated into Q2, 2024.

Amount: \$2,500,000

Taxation\$1,000,000 Increase to Taxation Demand one-timeImpact:

Request: General Building Infrastructure Renewal

Justification: Budget is requested for general building infrastructure renewal that includes additional budget for the City Hall mechanical upgrade due to equipment cost escalations, and for the modernization of the elevator at the Parkinson Activity Centre. The elevator has had recent frequent maintenance concerns and outages. Contractor investigation identified critical parts are now obsolete requiring modernization to ensure accessibility.

Amount: \$1,050,000

Capital Requests – Building Capital

Request: City Hall – Level 1 Meeting Room Suite

Justification: The meeting room suite of 4,200sqft on Level 1 of City Hall is complete and will be open shortly for use for City business as well as available for community bookings after hours. In the spirit of reconciliation and recognizing the living history of our region, the rooms are proposed to be given First Nations names, with artwork and decor to honour these names. The name na'?k'?ulam?n generally translates to 'the things that we do'. The existing capital project is complete, and due to inflationary costs experienced throughout this project, there is no budget remaining for such enhancements. Budget is therefore requested for artwork, decor and specific furniture to create a most meaningful space in the meeting room suite.

Amount: \$135,000

Request: City Yards – Female Changeroom Upgrades

Justification: Budget is requested to accommodate the increase of female staff for the Outdoor Operations team at the City Yards facility. The female changeroom facilities have become unsuitably overcrowded for the increased number of female staff. A remodeling of the changeroom and washroom is recommended to increase the area and allow for adequate room for the additional female staff.

Amount: \$130,000

Taxation\$130,000 Increase to Taxation Demand one-timeImpact:

Request: City Park – Rose Garden Improvements

Justification: Budget is requested for a cross-divisional operational initiative to modify existing amenities, with a focus on safety and operational improvements at City Park. Through the improvement of sightlines, and the introduction of new activities to encourage more park users onto the east side of the park, it is expected many of the social issues that occur will be moved from this area.

Amount: \$220,000

Request: Mission Recreation Park – Modular Park Washroom Unit

Justification: Budget is requested to purchase, transport and install a new, unused multi-stall parks washroom unit. The unit is proposed to be installed first at Mission Rec Park (MRP) to service the high demand in the southern half of the site. When other permanent washrooms become available at MRP, the unit will be relocated to another high demand location. Cost savings are expected to be realized through the reduction of renting and maintaining of the blue portable toilets.

Amount: \$160,000

- **Request:** Osprey Avenue Watermain
- Justification: Budget is requested to help minimize the overall service disruption to the surrounding Osprey Avenue neighbourhood. The project consists of upgrading the watermain along Osprey Avenue while the sewer project is being constructed as this neighbourhood was approved for intensification. The Water Utility will fund 50 per cent of the project to reflect the advancing of the renewal project, while the remaining 50 percent will be recovered, from development, through future latecomer fees.
- Amount: \$300,000 funded from Water reserves

Taxation Impact - Summary

\$1,009,350 Average residential property

\$2,373 Municipal portion of taxes

\$87

\$ Increase from prior year

3.78%

% Increase from prior year

2022 to 2023 Average Residential Assessed Value

2023 Average Property Owner Impact

What Do Tax Dollars Pay For:

34% 13% 10% **5% 5%** 33% Planning **Active Living** Community Infrastructure Fire Other and Culture Safety Department Programs and Development

Five-Year Financial Plan

	2023	2024	2025	2026	2027
General revenues	(15,683)	(16,023)	(16,371)	(16,735)	(17,089)
Net operating budget	177,175	188,047	199,214	211,275	222,421
Pay-as-you-go capital	15,132	16,255	17,453	18,727	19,981
Taxation demand	176,624	188,279	200,296	213,266	225,313
New construction tax revenue	(3,200)	(2,808)	(2,994)	(3,185)	(3,135)
Net property owner impact	3.78%	5.01%	4.79%	4.89%	4.18%

214

QUESTIONS?

Budget 2023 #kelownabudget

For more information visit: kelowna.ca/budget

2023

FINANCIAL PLAN

Final Budget Volume Five-Year Financial Plan

April 24, 2023 Council Chambers

#kelownabudget Kelowna.ca/budget

BYLAW NO. 12502

Five-Year Financial Plan 2023-2027

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

- 1. Schedule "A" attached hereto and forming part of this bylaw is hereby declared to be the Five-Year Financial Plan of the City of Kelowna for the period January 1, 2023 to and including December 31, 2027.
- 2. Schedule "B" attached hereto and forming part of this bylaw is hereby declared to be the Statement of Objectives and Policies in accordance with Section 165 (3.1) of the *Community Charter*.
- 3. This bylaw may be cited for all purposes as the "Five-Year Financial Plan Bylaw, 2023-2027, No. 12502".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

Schedule "A" Financial Plan 2023 - 2027

	2023	2024	2025	2026	2027	2028-2030
Revenue						
Property Value Tax	176,624,339	188,279,055	200,295,838	213,266,188	225,313,048	723,943,923
Library Requisition	7,325,200	7,471,704	7,621,138	7,773,561	7,929,032	24,751,330
Parcel Taxes	3,433,673	3,386,926	3,226,092	2,878,729	2,643,767	7,706,257
Fees and Charges	166,752,954	168,998,093	176,296,845	181,604,696	185,477,990	607,768,371
Borrowing Proceeds	8,507,400	161,039,504	50,989,600	0	0	6,321,200
Other Sources	90,079,744	64,924,162	68,236,877	65,808,081	64,104,429	192,860,588
-	452,723,310	594,099,445	506,666,391	471,331,255	485,468,266	1,563,351,669
Transfer between Funds						
Reserve Funds	2,399,489	1,803,987	4,018,987	5,018,987	5,018,987	4,271,961
DCC Funds	55,191,710	27,879,895	45,071,243	42,110,785	72,931,463	131,287,135
Surplus/Reserve Accounts	269,856,570	73,537,991	74,663,418	52,310,615	67,176,349	243,984,608
-	327,447,769	103,221,873	123,753,649	99,440,388	145,126,799	379,543,705
Total Revenues	780,171,079	697,321,318	630,420,039	570,771,643	630,595,065	1,942,895,374
Expanditures						
Municipal Debt						
Debt Interest	3 990 937	5 854 736	10.057.004	12 570 814	15 792 909	46 925 215
Debt Principal	6 918 584	7 140 895	9 295 237	13,575,614	14 561 097	40,025,515
Capital Expenditures	367 208 100	288 733 676	204 324 905	129 728 128	173 098 283	427 984 615
Other Municipal Purposes	507,200,100	200,735,070	204,524,505	125,720,120	175,050,205	427,504,015
General Government Planning, Development &	38,935,773	44,982,463	47,990,399	51,232,650	54,614,371	185,472,621
Building Services	35,969,865	29,502,083	29,279,911	30,240,946	31,205,486	99,725,484
Community Services	102,941,048	105,058,206	108,811,337	112,228,174	115,657,991	368,692,809
Protective Services	94,492,441	88,067,171	91,149,022	94,369,042	97,594,381	313,263,910
Utilities	27,894,607	26,681,298	27,473,602	28,278,225	28,981,397	92,258,679
Airport	22,666,780	23,045,145	24,379,339	26,662,772	27,403,596	86,108,813
-	701,008,035	619,065,673	552,760,756	499,889,305	558,900,411	1,663,341,561
Transfers between Funds						
Reserve Funds	31,694,307	31,556,581	32,324,994	32.376.236	32,439,085	97.164.211
DCC Funds	0	0	0	0	0	0
Surplus/Reserve Accounts	47,468,737	46.699.064	45,334,289	38,506,102	39,255,570	182,389,601
	79,163,044	78,255,645	77,659,283	70,882,338	71,694,655	279,553,812
Total Expenditures	780,171,079	697,321,318	630,420,039	570,771,643	630,595,065	1,942,895,374

Note: Totals may not add due to rounding.

Schedule "B" Statement of Objectives and Policies

In accordance with Section 165(3.1) of the *Community Charter*, municipalities are required to include in the Five-Year Financial Plan, objectives and policies regarding each of the following:

- (a) For each of the funding sources described in Section 165(7) of the *Community Charter*, the proportion of total revenue that is proposed to come from that funding source;
- (b) The distribution of property value taxes among the property classes that may be subject to taxes;
- (c) The use of permissive tax exemptions.

Funding Sources

Table 1 shows the proportion of total revenue proposed to be raised from each funding source in 2023. Property taxes and fees and charges are two of the largest sources of revenue. Both have advantages in that they are stable, relatively simple to administer and are generally understood by citizens. The City of Kelowna also utilizes funds from reserves and surplus as another main source of financial support. Reserve funds are closely managed to ensure and protect the current and future financial viability of the municipality. Other sources of revenue may be variable and fluctuate from year to year depending on the economic influences and capital programs undertaken by the City.

<u>Objectives</u>

- Investigate other potential funding sources and securing opportunities for additional revenues.
- Begin to decrease the municipality's reliance on property taxes and explore opportunities to increase the percent of total revenue received from user fees and charges and senior government grants.
- Maintain a fees and charges structure whereby increases are applied on a regular basis in line with inflation, while ensuring that service levels remain competitive and affordable.

<u>Policies</u>

- Pursue non-property tax revenues whenever possible through applying for government grants and charging user fees at appropriate levels.
- Perform regular reviews of revenue generating areas for appropriate application of rate increases.
 - Planning and Development Fees.
 - Active Living & Culture Fees and Charges application of BC Consumer Price Index.
 - Utility Revenues ensure Utilities operate as self-supporting enterprise funds.
- Increase provincial and federal grant revenue through maximum utilization of the City's Grant Manager position.

Table 1: Sources of Revenue

Revenue Source	Revenue \$ (000's)	% of Revenue
Property Value Tax	176,624	23%
Library Requisition	7,325	1%
Parcel Taxes	3,434	1%
Fees and Charges	166,753	21%
Borrowing Proceeds	8,507	1%
Other Sources	90,080	11%
Reserve Funds/Accounts	327,448	42%
Total	780,171	100%

Distribution of Property Tax Rates

Table 2 outlines the council approved municipal tax distribution policy for 2023 and the relative proportion of tax revenues. Projected revenues from the combined residential, recreational and Non-Profit classes, provides the largest proportion of property tax revenue. This cumulative class represents the largest tax assessment base and hence utilizes the majority of City services.

<u>Objectives</u>

- Provide an effective tax change that is the same for all property classes.
- Ensure that business and light industry property tax ratios remain below the average of BC municipalities with populations greater than 75,000.
- Allow for a maximum ratio cap of 3:1 for the Light Industrial/Business class.

<u>Policies</u>

- Council will annually review and modify tax class ratios to provide an effective tax change that is the same for all classes.
- The impacts on other property classes from administering a ratio cap on the Light Industrial/Business classes will be reported to Council during the annual Tax Distribution Policy review.
- Regularly review and compare the City's relative position in terms of distribution of taxes to other similarly sized municipalities in British Columbia.

Property Class	Description	2023 Tax Class Ratios	Tax Revenue \$ (000's)	2022 Tax Class Ratios
01/08/03	Res/Rec/NP/SH	1.0000:1	123,529	1.0000:1
02	Utilities	5.7720:1	788	6.0783:1
04	Major Industrial	8.5581:1	0	7.5328:1
05/06	Light Ind/Bus/Other	2.4594:1	51,603	2.5451:1
09	Farm Land	0.2307:1	12	0.2052:1
91	Farm Improvements	0.5149:1	692	0.4905:1
	Total Revenues		176,624	

Table 2: Tax Class Ratios and Projected Revenues

Property Tax Exemptions

The City has an existing permissive tax exemption policy which guides the administration and approval of permissive tax exemptions. Some of the eligibility criteria for permissive tax exemptions that are outlined in the policy include the following:

- The applicant must qualify for an exemption under the provisions of the Community Charter.
- The organization receiving an exemption must be a registered non-profit society or registered charity, as the support of the municipality will not be used for commercial and private gain.
- The tax exemption must demonstrate benefit to the community and residents of the City by enhancing the quality of life (spiritually, educationally, socially and culturally), while delivering services economically to the citizens within the community.

The value of tax exemptions provided by Council for 2023 (based on 2022 assessment totals and tax rates) is \$3,866,297. The following breaks down the total into various exemption categories and the exemption value for the category:

Places of Worship - \$ 324,543 Private schools - \$ 77,641 Hospitals - \$ 16,239 Special Needs Housing - \$ 70,002 Social Services - \$ 344,793 Public Park, Athletic or Recreational - \$ 414,701 Cultural - \$ 455,857 Partnering, Heritage or Other Special Exemptions Authority - \$ 376,521 Revitalization - \$1,786,000

In order to encourage the restoration and preservation of commercial, industrial and institutional building, properties that meet the criteria outlined in the Heritage Building Tax Incentive Program policy can receive a tax exemption.

The establishment of the Revitalization Tax Exemption policy allows qualifying properties within the Downtown Urban Centre and Rutland Urban Centre areas to receive a tax exemption.

<u>Objectives</u>

- Continue to provide permissive tax exemptions to support qualifying organizations that improve the well-being of the community.
- The municipality will continue to provide heritage and revitalization tax exemptions for qualifying properties.

Policies

• Permissive tax exemptions will be considered to encourage activities that: (a) are consistent with the quality of life objectives of the municipality; (b) provide direct access and benefit to the public; and (c) would otherwise be provided by the municipality.

- To meet the city's commitment to the ongoing restoration, preservation and maintenance of buildings and structures on its Heritage Register, eligible properties will be considered for a tax exemption.
- To support the city's revitalization program of the Downtown Urban Centre and Rutland Urban Centre, qualifying properties will be considered for a tax exemption.

BYLAW NO. 12503

Tax Structure Bylaw, 2023

WHEREAS the Letters Patent of the City of Kelowna provide that the municipality may be divided into two (2) or more taxation areas by bylaw adopted prior to the adoption of the Annual Budget Bylaw;

NOW THEREFORE, the Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

1. Taxation Area 1

All lands and improvement thereon classified for assessment purposes as "Farm".

2. <u>Taxation Area 2</u>

All lands and improvements thereon not included in Taxation Area 1.

- 3. This bylaw shall be applicable for the 2023 taxation year.
- 4. This bylaw may be cited for all purposes as "Tax Structure Bylaw, 2023 No. 12503".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

BYLAW NO. 12504

Annual Tax Rates Bylaw, 2023

WHEREAS the Letters Patent dated the Twenty-fifth day of April, 1973 for the City of Kelowna provides for differing levels of taxation taking into consideration the extent of level of services being provided to different areas within the municipality.

The Council of the City of Kelowna, in open meeting assembled, enacts as follows:

- 1. The following rates are hereby imposed and levied for the taxation year 2023:
 - (a) For all lawful General purposes of the municipality on the assessed value of land and improvements taxable for general municipal purposes, rates appearing in column "A" of Schedule 1 of this Bylaw;
 - (b) For Debt purposes on the assessed value of land and improvements taxable for general municipal purposes, rates appearing in column "B" of Schedule 1 of this Bylaw;
 - (c) For purposes of the Okanagan Regional Library on the assessed value of land and improvements taxable for Regional Library purposes, rates appearing in column "C" of Schedule 1 of this Bylaw;
 - (d) For Hospital purposes on the assessed value of land and improvements taxable for Regional Hospital District purposes, rates appearing in column "D" of Schedule 1 of this Bylaw;
 - (e) For purposes of the Regional District of Central Okanagan on the assessed value of land and improvements taxable for Regional District purposes, rates appearing in column "E" of Schedule 1 of this Bylaw;
 - (f) For purposes of the Regional District of Central Okanagan on the assessed value of land only for the Regional District of Central Okanagan Sterile Insect Release Program, rates appearing in column "F" of Schedule 1 of this Bylaw; and
 - (g) For Local Service Area purposes on the assessed value of land and improvements taxable for general municipal purposes, rates appearing in columns "A" and "B" of Schedule 2 of this Bylaw.
- 2. This bylaw may be cited as "Annual Tax Rates Bylaw, 2023 No. 12504".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

Bylaw No. 12504 – Page 2

SCHEDULE 1

CITY OF KELOWNA

GENERAL MUNICIPAL, DEBT, HOSPITAL AND REGIONAL DISTRICT TAX RATES - 2023

							TAXABE
						LAND	
		TAX RAT	ES (DOLLA	R OF TAX PER	\$1,000 TAXABL	E VALUE)	ONLY
		Α	В	С	D	E	F
PROPER	PROPERTY CLASS MUNICIPAL DEBT LIBRARY DISTRICT DISTRICT						REGIONAL DISTRICT SIR
01	Residential	2.2744	0.0759	0.0973	0.1908	0.1924	0.0184
02	Utilities	13.1280	0.4379	0.5617	0.6678	0.6735	0.0644
03	Supportive Housing	2.2744	0.0759	0.0973	0.1908	0.1924	0.0184
04	Major Industrial	19.4647	0.6492	0.8328	0.6487	0.6543	0.0625
05	Light Industrial	5.5936	0.1866	0.2393	0.6487	0.6543	0.0625
06	Business/Other	5.5936	0.1866	0.2393	0.4674	0.4715	0.0451
08	Recreation/Non-Profit	2.2744	0.0759	0.0973	0.1908	0.1924	0.0184
09	Farm:						
	a) Land	0.5100	0.0175	0.0225	0.1908	0.1924	0.0184
	b) Improvements	1.1711	0.0391	0.0501	0.0000	0.0000	0.0000

Bylaw No. 12504 – Page 3

SCHEDULE 2

CITY OF KELOWNA

2023 LOCAL SERVICE AREA TAX RATES

		Α	В
PR	OPERTY CLASS	DOWNTOWN BUSINESS IMPROVEMENT AREA	UPTOWN RUTLAND BUSINESS IMPROVEMENT AREA
1.	RESIDENTIAL	0	0
2.	UTILITY	0	0
4.	INDUSTRIAL – MAJOR	0	0
5.	INDUSTRIAL – LIGHT	1.0215	0.9293
6.	BUSINESS	1.0215	0.9293
7.	TREE FARM	0	0
8.	SEASONAL	0	0
9.	FARM a) LAND	0	0
	b) IMPROVEMENT	0	0

BYLAW NO. 12505

Development Cost Charge Reserve Fund Expenditure Bylaw, 2023

WHEREAS, there is an unappropriated balance in the Development Cost Charge Reserve Fund of One Hundred and Forty Eight Million, One Hundred and Forty Thousand, Five Hundred and Sixty Five dollars (\$ 148,140,565) as at January 1, 2023.

AND WHEREAS, it is deemed desirable to expend a portion of the monies set aside under said Development Cost Charge Reserve Fund for the purpose of utility, road and land improvement and additions;

NOW THEREFORE, the Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

1. The sum of One Hundred and Forty Eight Million, One Hundred and Forty Thousand, Five Hundred and Sixty Five dollars (\$ 148,140,565) is hereby appropriated from the Development Cost Charge Reserve Fund to be expended in 2023 for the following purposes:

Land for Park Purposes	\$ 24,397,439
Park Development	\$17,428,958
Road Construction	\$ 86,380,320
Wastewater Trunks, Plant & Debt Repayment	\$ 2,819,267
Water Mains, Pump Stations & Reservoir Construction	\$ 17,111,398
Drainage	\$3,183

<u>\$ 148,140,565</u>

- 2. The expenditure to be carried out by the monies hereby appropriated shall be more particularly specified and authorized by resolution of Council.
- 3. Should any of the above remain unexpended after the expenditures hereby authorized have been made, the unexpended balance shall be returned to the credit of the Development Cost Charge Reserve Fund.
- 4. This bylaw may be cited as the "Development Cost Charge Reserve Fund Expenditure Bylaw, 2023, No. 12505".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

BYLAW NO. 12506

Sale of City-Owned Land Reserve Fund Expenditure Bylaw, 2023

WHEREAS, there is an unappropriated balance in the Sale of City-Owned Land Reserve Fund of Ten Million, Nine Hundred Thirty Four Thousand, One Hundred Fifty Dollars (\$10,934,150) as at January 1, 2023.

AND WHEREAS, it is deemed desirable to expend a portion of the monies set aside under said Sale of City-Owned Land Reserve Fund for the purpose of land purchases and enhancements set out below;

NOW THEREFORE, the Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

1. The sum of Ten Million, Nine Hundred Thirty Four Thousand, One Hundred Fifty Dollars (\$10,934,150) as at January 1, 2023 is hereby appropriated from the Sale of City-Owned Land Reserve Fund to be expended in 2023 for the following purposes:

General Land	\$ 5,548,575
Parks Land	\$ 1,590,808
Housing Opportunity	\$ 3,794,767

<u>\$10,934,150</u>

- 2. The expenditure to be carried out by the monies hereby appropriated shall be more particularly specified and authorized by resolution of Council.
- 3. Should any of the above remain unexpended after the expenditures hereby authorized have been made, the unexpended balance shall be returned to the credit of the City-Owned Land Reserve Fund.
- 4. This bylaw may be cited as the "Sale of City-Owned Land Reserve Fund Expenditure Bylaw, 2023, No. 12506".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

BYLAW NO. 12508

Septic Removal Specific Area Reserve Fund Expenditure Bylaw, 2023

WHEREAS, there is an unappropriated balance in the Septic Removal Specific Area Reserve Fund of Six Million, Eight Hundred and Eighty Eight thousand, Six Hundred and Twenty One (\$6,882,621), as at January 1, 2023.

AND WHEREAS, it is deemed desirable to expend a portion of the monies set aside under said Septic Removal Specific Area Reserve Fund for the purpose of septic removal and enhancements set out below;

NOW THEREFORE, the Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

 The sum of Six Million, Eight Hundred and Eighty Eight thousand, Six Hundred and Twenty One (\$6,882,621), as at January 1, 2023 is hereby appropriated from the Septic Removal Specific Area Reserve Fund to be expended in 2023 for the following purposes:

Septic Removal

\$6,882,621

- 2. The expenditure to be carried out by the monies hereby appropriated shall be more particularly specified and authorized by resolution of Council.
- 3. Should any of the above remain unexpended after the expenditures hereby authorized have been made, the unexpended balance shall be returned to the credit of the Septic Removal Specific Area Reserve Fund
- 4. This bylaw may be cited as the "Septic Removal Specific Area Reserve Fund Expenditure Bylaw, 2023, No. 12508".

Read a first, second and third time by the Municipal Council this

Adopted by the Municipal Council of the City of Kelowna this

Mayor

Report to	Council
-----------	---------

Date:	April 24, 2023
То:	Council
From:	City Manager
Subject:	2023 Sterile Insect Release (SIR) parcel tax
Department:	Financial Services - Controller

Recommendation:

THAT Council approve the Sterile Insect Release Program as outlined in the report of the Revenue Supervisor dated April 24, 2023, charging the 2023 Sterile Insect Release (SIR) Parcel Tax to individual property tax rolls in accordance with the 2023 SIR Parcel Tax Assessment Roll provided to the City of Kelowna by SIR administration.

AND THAT Bylaw No. 12516 being the Sterile Insect Release Program Parcel Tax Bylaw 2023 be forwarded for reading consideration.

Purpose:

To authorize the 2023 Sterile Insect Release parcel tax levy on specified property tax rolls within the City of Kelowna.

Background:

The SIR Program is an area wide codling moth management program operating in key growing areas of the Okanagan, Similkameen and Shuswap Valleys, in commercial orchards and urban areas. The SIR Board governs the service provided through bylaws of the Okanagan Similkameen, Central Okanagan, North Okanagan, and Columbia Shuswap Regional Districts. Funding is requisitioned through a land value tax paid by all property owners in the service area and a parcel tax levied against planted host tree acreage. The SIR Program provides enforcement of area wide management and control of codling moth infestation as well as the rearing and releasing of sterile codling moths throughout orchards. This environmentally friendly technique reduces the need for reliance on pesticides. Sterile insect technology allows for greater opportunities for sustainable agricultural practices such as integrated pest management controls of orchard pests. A reduction in chemical sprays benefits the entire community through less environmental impact to the air, water and soil quality, benefiting public health as well as producing quality fruit.

The program consists of two separate levies. The first levy is based on the assessed value of the land and a tax rate for each class of property (residential, utility, major and light industrial, recreational, business, and farm land), and is provided by the Regional District of Central Okanagan. It applies, generally, to all property tax rolls within the City of Kelowna.

The second levy is a parcel tax applicable to all properties that are 0.30 acres or more and contain 20 or more codling moth host trees (apple, pear, crab apple, and quince). The 2023 charge of \$156.42 per assessed acre will be applied to all property tax rolls on the list provided by SIR administration and are attached to Bylaw 12516.

The following chart lists the historical annual budget figures levied on property within the City of Kelowna as well as the year over year percentage change.

	2019	2020	2021	2022	2023
General Levy on All Properties	\$744,305	\$747,829	\$734,153	\$745,361	\$763,154
Percentage Change from Prior Year	0.79%	0.47%	-1.83%	1.53%	2.39%
Parcel Tax Levy	\$307,121	\$292,855	274,229	\$276,676	\$274,968
Percentage Change from Prior Year	-3.75%	-4.65%	-6.36%	0.89%	-0.62%
Per Acre Charge for Parcel Tax	\$139.26	\$139.26	\$139.26	\$150.40	\$156.42
Percentage Change from Prior Year	0.00%	0.00%	0.00%	8.00%	4.00%

Internal Circulation:

Office of the City Clerk

Considerations applicable to this report:

Legal/Statutory Authority:

Section 200 of the Community Charter provides that Council may, by bylaw, impose a parcel tax in accordance with Part 7 Division 4 – Parcel Taxes to provide all or part of the funding for a service.

Financial/Budgetary Considerations:

While the SIR program is run across the 4 participating regional districts, each municipality has tax authority over their own specific area. Each municipality collects the parcel tax and then passes on the funds to the Regional District, who then uses the funds to pay for the SIR Program.

Considerations not applicable to this report: Legal/Statutory Procedural Requirements: Existing Policy: External Agency/Public Comments: Communications Comments:

Submitted by:

Patrick Gramiak, Revenue Supervisor

Approved for inclusion:

Joe Sass, Finance Director, Financial Services

Sterile Insect Release (SIR) Program 2023

le owna

SIR Program

- ▶ The Central Okanagan joined the SIR program in 2002
- Current participants include the Okanagan Similkameen,
 Central and North Okanagan and the Columbia Shuswap region
- It's a codling moth management program that is environmentally friendly and controls the risk of codling moth infestation in commercial orchards and urban areas
- SIR board is requesting a tax levy of \$1,038,122 to cover the 2023 program budget

Part 1: Levy on Land Only

A general levy of 0.0229 cents per thousand of assessed value of land on all classes.

For example: \$2.29 would be levied on land that is assessed at \$100,000

Part 2: Levy on Parcels

All parcels of land that are o.3 acres or more and contain 20 or more codling moth host trees are charged \$156.42 per assessed acre.

Bylaw 12516 adjusts the Parcel Tax levy for 2023

Questions?

For more information, visit kelowna.ca.

BYLAW NO. 12516

Sterile Insect Release Program Parcel Tax Bylaw 2023

A bylaw pursuant to Section 200 of the *Community Charter* to impose and levy a Parcel Tax upon the owners of land or real property within the City of Kelowna being served by the Sterile Insect Release Program.

NOW THEREFORE, the Municipal Council of the City of Kelowna, in open meeting assembled, enact as follows:

- 1. A Parcel Tax shall be and is hereby imposed and levied upon the owners of land or real property as shown on Schedule "A" attached to and forming part of this bylaw, being served by the Sterile Insect Release Program.
- 2. The Parcel Tax shall be levied for the 2023 tax year on each parcel of land aforementioned, and the amount of such Parcel Tax shall be One Hundred and Fifty Six Dollars and Forty Two Cents (\$156.42) per assessed acre.
- 3. This bylaw shall be known for all purposes as the "Sterile Insect Release Program Parcel Tax Bylaw 2023 No. 12516".

Read a first, second and third time and adopted by the Municipal Council this 24th day of April, 2023.

Mayor

Schedule A

Regional District of Central Okanagan

2023 OKSIR PARCEL TAX ROLL

Jurisdiction 217

Folio	Property Address	Legal Description	Adjusted Acres	x\$156.42
21703108010	1355 LATTA, KELOWNA	LOT 10, PLAN KAP1611, SECTION 1, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN	6.26	\$979.19
21702121000			2.04	6475 F2
21703121000		LOT 2, PLAN KAP 13839, SECTION 1, TOWNSHIP 23, OSOYOOS DIV OF TALE LAND DISTRICT	3.04	\$475.52 \$1.725.21
21703121010		LOT 2, PLAN KAP33255, SECTION 1, TOWINSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	11.03	\$1,725.31
21703205000	2635 SEXSMITH, KELOWNA	LOT 1, PLAN KAP12772, SECTION 3&33, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 26	8.01	\$1,252.92
21703210125	2517 SEXSMITH, KELOWNA	LOT 10, PLAN KAP21431, SECTION 3&4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	6.84	\$1,069.91
21703210210	705 VALLEY, KELOWNA	LOT B, PLAN KAP31659, SECTION 3, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	4.97	\$777.41
21703236002	770 PACKINGHOUSE, KELOWNA	LOT 1, PLAN EPP68383, SECTION 3,4,9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	1.13	\$176.75
21703245000	590 BRENDA, KELOWNA	LOT 25, BLOCK 5, PLAN KAP896, SECTION 4&9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	4.85	\$758.64
21703255321	1982 UNION, KELOWNA	LOT A, PLAN KAP75150, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21703255322	1980 UNION, KELOWNA	LOT B, PLAN KAP75150, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21703262000	2389 LONGHILL, KELOWNA	LOT 13, BLOCK 9, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 33 TWP 26	6.29	\$983.88
21703263000	2206 LONGHILL, KELOWNA	LOT 2, BLOCK 17, PLAN KAP1068, SECTION 4&34, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 26	7.33	\$1,146.56
21703264000	185 VALLEY, KELOWNA	LOT 3, BLOCK 17, PLAN KAP1068, SECTION 4&34, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 26	3.77	\$589.70
21703266000	143 VALLEY, KELOWNA	LOT 5, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 20854	3.84	\$600.65
21703267000	1 - 127 VALLEY, KELOWNA	LOT 6, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	9.27	\$1,450.01
21703268000	2214 BONN, KELOWNA	LOT 7, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 22394	4.51	\$705.45
21703269000	115 VALLEY, KELOWNA	LOT 8, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	10.16	\$1,589.23
21703271000	220 MAIL, KELOWNA	LOT 12, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	8.45	\$1,321.75
21703272000	180 MAIL, KELOWNA	LOT 13, BLOCK 17, PLAN KAP1068, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	6.16	\$963.55
21703274000	135 VALLEY, KELOWNA	LOT H, PLAN KAP1636, SECTION 4, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H8323	3.80	\$594.40
21703278000	800 PACKINGHOUSE, KELOWNA	LOT 3, PLAN KAP1884, SECTION 4&9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21703279000	2160 SCENIC, KELOWNA	LOT 4, PLAN KAP1884, SECTION 4&9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, AMD LOT (DD 79128F)	2.94	\$459.87

21703410000	1250 GLENMORE, KELOWNA	LOT 1, BLOCK 11, PLAN KAP1068, SECTION 9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP85917	2.24	\$350.38
21703411000	1 - 1340 GLENMORE, KELOWNA	LOT 2, BLOCK 11, PLAN KAP1068, SECTION 9, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP85919, MANUFACTURED HOME REG.# 40311, BAY # 1	1.00	\$156.42
21703645000	2434 GALE, KELOWNA	LOT 2, PLAN KAP1453, SECTION 23, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	1.77	\$276.86
21703664000	2155 PIER MAC, KELOWNA	LOT 1, PLAN KAP2257, SECTION 23, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	2.34	\$366.02
21703664514	2855 DRY VALLEY, KELOWNA	LOT A, PLAN KAP37471, SECTION 23, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, MOBILE ON GALE RD, MANUFACTURED HOME REG.# 4566	3.56	\$556.86
21703664516	2849 DRY VALLEY, KELOWNA	LOT B, PLAN KAP37471, SECTION 23, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT	10.66	\$1,667.44
21703884000	3310 MATHEWS, KELOWNA	LOT 63, PLAN KAP1247, SECTION 3&34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 29	5.56	\$869.70
21703905104	4236 SPIERS, KELOWNA	LOT B, PLAN KAP92871, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.44	\$694.50
21703906000	4233 SPIERS, KELOWNA	LOT 119, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN A1060	1.13	\$176.75
21703907000	4221 SPIERS, KELOWNA	LOT 120, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 72661	11.20	\$1,751.90
21703908000	4215 SPIERS, KELOWNA	LOT 121, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21703912000	3030 GRIEVE, KELOWNA	LOT 125, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# B13027	5.50	\$860.31
21703913001	3015 GRIEVE, KELOWNA	LOT 126, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 068492	6.53	\$1,021.42
21703913100	3145 GULLEY, KELOWNA	LOT 127, PLAN KAP1247, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	8.42	\$1,317.06
21703949320	4280 SPIERS, KELOWNA	LOT B, PLAN KAP34609, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	8.63	\$1,349.90
21703949340	4207 SPIERS, KELOWNA	LOT B, PLAN KAP47098, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.07	\$480.21
21703949390	3480 WATER, KELOWNA	LOT A, PLAN KAP71707, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.16	\$650.71
21703950000	3965 TODD, KELOWNA	PARCEL B, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP44155, ASSIGNED PCL B (D.D.191005F) OF L 154	8.67	\$1,356.16
21703952062	3865 SPIERS, KELOWNA	LOT 138, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H15296 & 39975	6.75	\$1,055.84
21703956000	4201 SPIERS, KELOWNA	LOT 142, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.18	\$966.68
21703960000	2699 SAUCIER, KELOWNA	LOT 145, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX W 320 FT	1.35	\$211.17
21703965000	4175 TODD, KELOWNA	LOT 150, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & OF W 1/2 OF SEC 33	4.98	\$778.97
21703968000	4067 TODD, KELOWNA	LOT 153, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.70	\$735.17
21703971501	2177 WARD, KELOWNA	LOT 157, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP78689, KAP88849	1.25	\$195.53
21703971503	2287 WARD, KELOWNA	LOT B, PLAN KAP78689, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP88849	35.85	\$5,607.66
21703971504	3974 TODD, KELOWNA	LOT 1, PLAN KAP88849, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.23	\$192.40 240

21703973000	3980 TODD, KELOWNA	LOT 159, PLAN KAP1247, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.41	\$376.97
21703979000	2715 HEWLETT, KELOWNA	LOT 3, PLAN KAP1656, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B7338	8.30	\$1,298.29
21703981000	2570 SAUCIER, KELOWNA	PARCEL A, PLAN KAP6018B, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, PCL A OF L 1 PL 1656 S/O PL B6018 (DD 127007F)	1.18	\$184.58
21703985000	2675 HEWLETT, KELOWNA	LOT A, PLAN KAP12142, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.83	\$755.51
21703990002	3950 SPIERS, KELOWNA	LOT E, PLAN KAP12142, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 27157 28923 KAP65455	1.37	\$214.30
21703995027	3920 TODD, KELOWNA	LOT B, PLAN KAP21140, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21703995159	3955 SPIERS, KELOWNA	LOT A, PLAN KAP56989, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.40	\$218.99
21703995172	2620 HEWLETT, KELOWNA	LOT 2, PLAN KAP92520, SECTION 4, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	14.25	\$2,228.99
21703997000	4200 STEWART, KELOWNA	LOT 237, PLAN KAP1247, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 32 TWP 29	7.79	\$1,218.51
21704008004	4025 CASORSO, KELOWNA	LOT 1, PLAN EPP72879, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.60	\$875.95
21704008005	4100 TODD, KELOWNA	LOT 2, PLAN EPP72879, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704014004	3896A CASORSO, KELOWNA	LOT A, PLAN KAP92331, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.81	\$1,221.64
21704016000	3877 CASORSO, KELOWNA	LOT 4, PLAN KAP2243, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.51	\$236.19
21704021000	3995 CASORSO, KELOWNA	LOT 8, PLAN KAP2243, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.94	\$772.71
21704023001	1989 WARD, KELOWNA	LOT 1, PLAN EPP95434, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	8.96	\$1,401.52
21704029000	4153 BEDFORD, KELOWNA	LOT 1, PLAN KAP15793, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, (DD D29970) SEC 32 TWP 29	5.77	\$902.54
21704031000	4122 BEDFORD, KELOWNA	LOT 4, PLAN KAP15793, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.88	\$294.07
21704032158	3860 CASORSO, KELOWNA	LOT 2, PLAN KAP89549, SECTION 5, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704084000	2090 WARD, KELOWNA	LOT B, PLAN KAP1780, SECTION 8, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	13.48	\$2,108.54
21704118205	1950 WARD, KELOWNA	LOT A, PLAN KAP48946, SECTION 8, TOWNSHIP 12, OSOYOOS DIV OF YALE LAND DISTRICT	12.00	\$1,877.04
21704118206	1990 WARD, KELOWNA	LOT B, PLAN KAP48946, SECTION 8, TOWNSHIP 12, OSOYOOS DIV OF YALE LAND DISTRICT	1.76	\$275.30
21704121000	3677 SPIERS, KELOWNA	LOT 1, BLOCK 2, PLAN KAP1072, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B5219 14900	7.25	\$1,134.05
21704127000	3663 SPIERS, KELOWNA	LOT 2, PLAN KAP1765, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 19631 KAP45040 KAP70726	7.25	\$1,134.05
21704151030	3769 SPIERS, KELOWNA	LOT 1, PLAN KAP23684, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.66	\$259.66
21704151105	2190 GULLEY, KELOWNA	LOT A, PLAN KAP26008, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.69	\$1,202.87
21704151150	3668 SPIERS, KELOWNA	LOT B, PLAN KAP28797, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704151155	3678 SPIERS, KELOWNA	LOT C, PLAN KAP28797, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.48	\$1,013.60
21704151192	2777 K.L.O., KELOWNA	LOT A, PLAN KAP43297, SECTION 9&10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	9.55	\$1,493.81
24704454405			12.42	64 042 74

2270415120 2725 K.L.O., KELOWNA LOT A. PLANK KAP45943, SECTION 9 & 1.0, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 14.61 5560.71 2170415126 3551 SPIERS, KELOWNA LOT 3, PLANK KAP33463, SECTION 9, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.86 5447.36 2170415120 2202 GUILEY, KELOWNA LOT 3, PLANK KAP3447, SECTION 9, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.85 5602.22 21704151202 2202 GUILEY, KELOWNA SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.85 5602.22 21704152003 3690 POOLEY, KELOWNA SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.19 51.995.75.15 21704155001 3455 ROSF, RELOWNA LOT 4, PLANK KAP355, SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.19 51.995.75.15 21704150001 3030 MCCULLOCH, KELOWNA LOT 4, PLANK KAP305, SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.81 \$595.96 21704150001 3030 MCCULLOCH, KELOWNA LOT 7, PLANK KAP305, SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$466.47 21704150001 3040 MCCULLOCH, KELOWNA LOT 7, PLANK KAP305, SECTION 10, TOWINSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$465.	21704151200	2452 GULLEY, KELOWNA	LOT 7, PLAN KAP29282, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	20.34	\$3,181.58
21704151260 2295 K.L.O., KELOWNA LDT 3, PLAN KAP33463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 4.16 \$550.71 21704151263 3551 SIPERS, KELOWNA LDT 3, PLAN KAP33463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.85 \$602.22 21704151292 2020 GULLEY, KELOWNA LDT A, PLAN KAP3463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.85 \$602.22 21704152003 3609 POOLY, KELOWNA LDT A, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 11.9 \$1.906.76 2170415003 3458 ROSE, KELOWNA LDT 3, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 2170415003 3630 MCCULLOCH, KELOWNA LDT 4, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 2170415003 3630 MCCULLOCH, KELOWNA LDT 4, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 5.64 \$882.21 2170415003 3630 MCCULLOCH, KELOWNA LDT 4, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 5.64 \$502.22 2170415003 3280 MCCULLOCH, KELOWNA LDT 4, PLAN KAP790, PART NL/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT <td>21704151210</td> <td>2725 K.L.O., KELOWNA</td> <td>LOT A, PLAN KAP45934, SECTION 9 & 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT</td> <td>19.61</td> <td>\$3,067.40</td>	21704151210	2725 K.L.O., KELOWNA	LOT A, PLAN KAP45934, SECTION 9 & 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	19.61	\$3,067.40
21704151265 3551 SPIERS, KELOWNA LDT 3, PLAN KAP33463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT. 2.86 \$447.36 21704151292 2202 GULLEY, KELOWNA LDT A, PLAN KAP3343, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT. 3.85 \$602.22 21704151203 3690 POOLEY, KELOWNA SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT. 16.99 \$2,657.36 21704152003 3695 ROSE, KELOWNA LDT 4, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT. 10.07 \$1,575.15 21704150001 3030 MCCULLOCH, KELOWNA LDT 4, PLAN KAP36, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 21704150001 3030 MCCULLOCH, KELOWNA LDT 5, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 5.64 \$882.21 21704150001 3040 MCCULLOCH, KELOWNA LDT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150001 3641 HART, KELOWNA LDT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150001 3641 HART, KELOWNA LDT 7, PLAN KAP150, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11	21704151260	2295 K.L.O., KELOWNA	LOT 2, PLAN KAP33463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.16	\$650.71
2170415192 2202 GULLEY, KELOWNA LOT A, PLAN KAP44147, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.85 \$602.22 21704152000 3690 POOLEY, KELOWNA SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.19 \$1,906.76 21704152000 3455 ROSE, KELOWNA LOT 4, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.19 \$1,957.55 21704157001 3480 FTZGERALD, KELOWNA LOT 5, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 21704150001 3090 MCCULLOCH, KELOWNA LOT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150001 3090 MCCULLOCH, KELOWNA LOT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150001 3020 MCCULLOCH, KELOWNA LOT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150001 3020 MCCULLOCH, KELOWNA LOT 7, PLAN KAP30, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$485.18 21704150000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP353, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91	21704151265	3551 SPIERS, KELOWNA	LOT 3, PLAN KAP33463, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP44147	2.86	\$447.36
21704152000 3690 POOLEY, KELOWNA SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MI OL CHAINS OF E 1/2 OF NE 1/4 16.99 \$2,657.58 21704155000 3455 ROSE, KELOWNA LOT 4, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 360 7100157051 380 FTZ2ERALD, KELOWNA LOT 5, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 381 \$595.96 21704157001 3030 MCCULLOCH, KELOWNA LOT 7, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 5.64 \$882.21 21704150001 3641 HART, KELOWNA LOT 7, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704174002 3099 MCCULLOCH, KELOWNA LOT 3, PLAN KAP71517, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.14 \$455.18 21704174002 3099 MCCULLOCH, KELOWNA LOT 3, PLAN KAP71621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704174002 3099 MCCULLOCH, KELOWNA LOT 3, PLAN KAP7152, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.	21704151292	2202 GULLEY, KELOWNA	LOT A, PLAN KAP44147, SECTION 9, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.85	\$602.22
21704156000 3455 ROSE, KELOWNA LOT 4, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.19 \$1,906.76 21704157051 3480 FITZGERALD, KELOWNA LOT 5, PLAN KAP355, PART E1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 21704157001 3030 MCCULLOCH, KELOWNA LOT 4, PLAN KAP390, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 21704150001 3090 MCCULLOCH, KELOWNA LOT 7, PLAN KAP390, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 5.64 \$882.21 21704150001 3641 HART, KELOWNA LOT 7, PLAN KAP390, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 5.11 \$486.47 21704150001 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP393, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 5.11 \$485.18 21704170003 3280 MCCULLOCH, KELOWNA LOT 3, PLAN KAP393, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.19 \$455.18 21704170003 3099 MCCULLOCH, KELOWNA LOT 8, PLAN KAP3153, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704179000 3635 REFKIE, KELOWNA LOT 8, PLAN KAP2303, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LA	21704152000	3690 POOLEY, KELOWNA	SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, N 10 CHAINS OF E 1/2 OF NE 1/4	16.99	\$2,657.58
21704157051 3480 FITZGERALD, KELOWNA LOT S, PLAN KAP35S, PART E1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT 10.07 \$1,575.15 21704157001 3030 MCCULLOCH, KELOWNA LOT 4, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$559.56 21704150001 3090 MCCULLOCH, KELOWNA LOT 5, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 5.64 \$882.21 21704150000 3641 HART, KELOWNA LOT 3, PLAN KAP390, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP378, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.46 \$1,010.47 21704150000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP378, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704174002 3999 MACCULLOCH, KELOWNA LOT 4, PLAN KAP383, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704178000 3635 REFKIE, KELOWNA LOT 8, PLAN KAP2383, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704178000 3635 REFKIE, KELOWNA LOT 1, PLAN KAP2383, SECTION 10, TOWNSHIP 26, OSOYOOS D	21704156000	3455 ROSE, KELOWNA	LOT 4, PLAN KAP355, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	12.19	\$1,906.76
21704159000 303 0M CCULLOCH, KELOWNA LOT 4, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 3.81 \$595.96 21704150000 309 0M CCULLOCH, KELOWNA LOT 5, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 5.64 \$882.21 21704150000 3641 HART, KELOWNA LOT 7, PLAN KAP790, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704150000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP90, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.46 \$1,010.47 21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP1513, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704174002 3099 MCCULLOCH, KELOWNA LOT 3, PLAN KAP1621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704170000 3651 REKIE, KELOWNA LOT 3, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.16 \$1,776.93 21704180000 3659 FITZGERALD, KELOWNA LOT 4, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.89 \$3,893.29 21704180000 3659 FITZGERALD, KELOWNA LOT 4, PLAN KAP2398, SECTION 10, TOWNSHIP 26,	21704157051	3480 FITZGERALD, KELOWNA	LOT 5, PLAN KAP355, PART E1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 30818	10.07	\$1,575.15
21704160001 3090 MCCULLOCH, KELOWNA LOT 5, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 5.64 \$882.21 21704161000 3641 HART, KELOWNA LOT 7, PLAN KAP790, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704167000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.46 \$1,010.47 21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP1517, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704174002 3099 MCCULLOCH, KELOWNA LOT 8, PLAN KAP1523, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704176000 3591 HART, KELOWNA LOT 8, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704180000 3635 REEKIE, KELOWNA LOT 8, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.36 \$1,776.93 21704180000 3695 FITZGERALD, KELOWNA LOT 1, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.95 \$161.48 2170418000 3696 MCCULLOCH, KELOWNA LOT 2, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRI	21704159000	3030 MCCULLOCH, KELOWNA	LOT 4, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 11840	3.81	\$595.96
21704161000 3641 HART, KELOWNA LOT 7, PLAN KAP790, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.11 \$486.47 21704161000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP798, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.46 \$1,010,47 21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP71621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 1.47 \$229.94 21704173000 3099 MCCULLOCH, KELOWNA LOT 8, PLAN KAP71621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704176000 3591 HART, KELOWNA LOT 8, PLAN KAP7082, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704178000 3635 REEKIE, KELOWNA LOT 8, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.34 \$3,893.29 2170418000 3695 FITZGERALD, KELOWNA LOT 8, PLAN KAP238, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 2170418000 3680 REEKIE, KELOWNA LOT 2, PLAN KAP238, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 2170418400 3680 RCELIC, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT </td <td>21704160001</td> <td>3090 MCCULLOCH, KELOWNA</td> <td>LOT 5, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 18708 33271</td> <td>5.64</td> <td>\$882.21</td>	21704160001	3090 MCCULLOCH, KELOWNA	LOT 5, PLAN KAP790, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 18708 33271	5.64	\$882.21
21704167000 3286 MCCULLOCH, KELOWNA LOT 3, PLAN KAP978, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.46 \$1,010.47 21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP1517, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 1.47 \$229.94 21704173000 3099 MCCULLOCH, KELOWNA LOT 8, PLAN KAP1521, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704176000 3691 HART, KELOWNA LOT 3, PLAN KAP1529, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704179000 3695 FIZCERALD, KELOWNA LOT 4, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 2170418000 3695 FIZCERALD, KELOWNA LOT 1, PLAN KAP238, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 21704181000 3520 REEKIE, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704183000 3680 REEKIE, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT <td>21704161000</td> <td>3641 HART, KELOWNA</td> <td>LOT 7, PLAN KAP790, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT</td> <td>3.11</td> <td>\$486.47</td>	21704161000	3641 HART, KELOWNA	LOT 7, PLAN KAP790, PART N1/2, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.11	\$486.47
21704173000 3020 MCCULLOCH, KELOWNA LOT 3, PLAN KAP1517, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 1.47 \$229.94 21704174002 3099 MCCULLOCH, KELOWNA LOT B, PLAN KAP1521, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704176000 3591 HART, KELOWNA LOT 3, PLAN KAP1589, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704179000 3635 REEKIE, KELOWNA LOT A, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 2170418000 3695 FITZGERALD, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED 3.95 \$617.86 2170418000 3680 REEKIE, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704184000 3096 MCCULLOCH, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 \$1642 21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 \$1756.42 21704194000 3275 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2395, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND D	21704167000	3286 MCCULLOCH, KELOWNA	LOT 3, PLAN KAP978, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.46	\$1,010.47
21704174002 3099 MCCULLOCH, KELOWNA LOT B, PLAN KAP71621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.91 \$455.18 21704176000 3591 HART, KELOWNA LOT 3, PLAN KAP1589, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704179000 3635 REEKIE, KELOWNA LOT A, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,769.33 21704181000 3695 FITZGERALD, KELOWNA LOT B, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 21704181000 3520 REEKIE, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704183000 3608 REEKIE, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 \$156.42 21704194000 3275 MCCULLOCH, KELOWNA LOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 4.77 \$746.12 2170419900 3524 ROSE, KELOWNA LOT 4, PLAN KAP1378, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.96	21704173000	3020 MCCULLOCH, KELOWNA	LOT 3, PLAN KAP1517, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B1212 B5633	1.47	\$229.94
21704176000 3591 HART, KELOWNA LOT 3, PLAN KAP1589, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 3.33 \$520.88 21704179000 3635 REEKIE, KELOWNA LOT A, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 11.36 \$1,776.93 21704180000 3695 FITZGERALD, KELOWNA LOT B, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 21704181000 3520 REKIE, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 73821 3.95 \$617.86 21704183000 3680 REEKIE, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2395, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 \$156.42 21704194000 3275 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 4.77 \$746.12 21704194000 3524 ROSE, KELOWNA LOT 4, PLAN KAP13708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 4.06 \$322.23 21704199100 3564 ROSE, KELOWNA LOT 7, PLAN KAP13708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DIS	21704174002	3099 MCCULLOCH, KELOWNA	LOT B, PLAN KAP71621, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.91	\$455.18
21704179000 3635 REEKIE, KELOWNA LOT A, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 11.36 \$1,776.93 21704180000 3695 FITZGERALD, KELOWNA LOT B, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 24.89 \$3,893.29 21704181000 3520 REEKIE, KELOWNA LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 73821 3.95 \$617.86 21704183000 3680 REEKIE, KELOWNA LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 6.11 \$955.73 21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP23957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 1.00 \$1.60 21704194000 3275 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 21.88 \$1.905.20 21704198000 3254 ROSE, KELOWNA LOT 4, PLAN KAP1840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 4.77 \$746.12 21704199100 3564 ROSE, KELOWNA LOT 4, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.06 \$322.23 21704199103 3696 MCCULLOCH, KELOWNA LOT 2, PLAN KAP308, SECTION 10, TOWNSHIP 26, OSOYOOS D	21704176000	3591 HART, KELOWNA	LOT 3, PLAN KAP1589, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.33	\$520.88
217041800003695 FITZGERALD, KELOWNALOT B, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT24.89\$3,893.29217041810003520 REEKIE, KELOWNALOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG,# 738213.95\$617.86217041830003680 REEKIE, KELOWNALOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT6.11\$955.73217041840003096 MCCULLOCH, KELOWNALOT 1, PLAN KAP2397, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 10713 & KAP465901.00\$106.22217041940003275 MCCULLOCH, KELOWNALOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT12.18\$1,905.20217041940003254 ROSE, KELOWNALOT A, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG,# 078725\$1.60\$1,870.78217041991003564 ROSE, KELOWNALOT A, PLAN KAP13808, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.06\$1,870.78217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991563269 MCCULLOCH, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041991503301 MCCULLOCH, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND	21704179000	3635 REEKIE, KELOWNA	LOT A, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	11.36	\$1,776.93
217041810003520 REEKIE, KELOWNALOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 738213.95\$617.86217041830003680 REEKIE, KELOWNALOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT6.11\$955.73217041840003096 MCCULLOCH, KELOWNALOT 1, PLAN KAP23957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 10713 & KAP465901.00\$156.42217041940003275 MCCULLOCH, KELOWNALOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT12.18\$1,905.20217041940003524 ROSE, KELOWNALOT 4, PLAN KAP13840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 0787254.77\$746.12217041991003564 ROSE, KELOWNALOT 4, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.96\$1,870.78217041991033269 MCCULLOCH, KELOWNALOT 2, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991043301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28981, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.483\$2,319.71217041991053269 MCCULLOCH, KELOWNALOT 2, PLAN KAP28981, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.483\$2,319.71217041991053301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28981, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992503630 FITZGERALD, KELOWNALOT 2, PLAN KAP308317, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DIST	21704180000	3695 FITZGERALD, KELOWNA	LOT B, PLAN KAP2038, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	24.89	\$3,893.29
217041830003680 REEKIE, KELOWNALOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT6.11\$955.73217041840003096 MCCULLOCH, KELOWNALOT 1, PLAN KAP2957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN1.00\$156.42217041940003275 MCCULLOCH, KELOWNALOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT12.18\$1,905.20217041980003524 ROSE, KELOWNALOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 0787254.77\$746.12217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.96\$1,870.78217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991003564 ROSE, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.96\$1,870.78217041991003564 ROSE, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991003564 ROSE, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991263630 INCCULLOCH, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT A, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH0.10\$1,579.8421704199256 <t< td=""><td>21704181000</td><td>3520 REEKIE, KELOWNA</td><td>LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 73821</td><td>3.95</td><td>\$617.86</td></t<>	21704181000	3520 REEKIE, KELOWNA	LOT 1, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 73821	3.95	\$617.86
21704184000 3096 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 1.00 \$156.42 21704194000 3275 MCCULLOCH, KELOWNA LOT 1, PLAN KAP2957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 12.18 \$1,905.20 21704198000 3524 ROSE, KELOWNA LOT A, PLAN KAP11840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 078725 4.77 \$746.12 21704199100 3564 ROSE, KELOWNA LOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 11.96 \$1,870.78 21704199100 3564 ROSE, KELOWNA LOT 2, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.06 \$322.23 21704199150 3269 MCCULLOCH, KELOWNA LOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 2.06 \$322.23 21704199180 3301 MCCULLOCH, KELOWNA LOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH 10.10 \$1,579.84 0CCUPIER (SEE 217-04199-253) OCCUPIER (SEE 217-04199-253) 10.00 \$156.42 21704199278 3656 ROSE, KELOWNA LOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 <	21704183000	3680 REEKIE, KELOWNA	LOT 2, PLAN KAP2398, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.11	\$955.73
217041940003275 MCCULLOCH, KELOWNALOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT.12.18\$1,905.20217041980003524 ROSE, KELOWNALOT A, PLAN KAP11840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 0787254.77\$746.12217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT11.96\$1,870.78217041991563269 MCCULLOCH, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991803301 MCCULLOCH, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT 2, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$16.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704184000	3096 MCCULLOCH, KELOWNA	LOT 1, PLAN KAP2957, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 10713 & KAP46590	1.00	\$156.42
217041980003524 ROSE, KELOWNALOT A, PLAN KAP11840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 0787254.77\$746.12217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT11.96\$1,870.78217041991563269 MCCULLOCH, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991803301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28811, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$156.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704194000	3275 MCCULLOCH, KELOWNA	LOT 1, PLAN KAP6530, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	12.18	\$1,905.20
217041991003564 ROSE, KELOWNALOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT11.96\$1,870.78217041991563269 MCCULLOCH, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991803301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28811, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$156.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704198000	3524 ROSE, KELOWNA	LOT A, PLAN KAP11840, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 078725	4.77	\$746.12
217041991563269 MCCULLOCH, KELOWNALOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT2.06\$322.23217041991803301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28811, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$156.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP338325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704199100	3564 ROSE, KELOWNA	LOT A, PLAN KAP18708, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	11.96	\$1,870.78
217041991803301 MCCULLOCH, KELOWNALOT 2, PLAN KAP28811, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 1014.83\$2,319.71217041992523630 FITZGERALD, KELOWNALOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH OCCUPIER (SEE 217-04199-253)10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$156.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704199156	3269 MCCULLOCH, KELOWNA	LOT 2, PLAN KAP90496, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.06	\$322.23
217041992523630 FITZGERALD, KELOWNALOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH10.10\$1,579.84217041992563661 HART, KELOWNALOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT1.00\$156.42217041992783565 ROSE, KELOWNALOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT7.87\$1,231.03	21704199180	3301 MCCULLOCH, KELOWNA	LOT 2, PLAN KAP28811, SECTION 3, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 10	14.83	\$2,319.71
21704199256 3661 HART, KELOWNA LOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 1.00 \$156.42 21704199278 3565 ROSE, KELOWNA LOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 7.87 \$1,231.03	21704199252	3630 FITZGERALD, KELOWNA	LOT B, PLAN KAP30817, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX MH OCCUPIER (SEE 217-04199-253)	10.10	\$1,579.84
21704199278 3565 ROSE, KELOWNA LOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT 7.87 \$1,231.03	21704199256	3661 HART, KELOWNA	LOT A, PLAN KAP31613, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
	21704199278	3565 ROSE, KELOWNA	LOT A, PLAN KAP38325, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.87	\$1,231.03 2

21704199308	3665 HART, KELOWNA	LOT 1, PLAN EPP74364, SECTION 10, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.40	\$688.25
21704209000	2502 BELGO, KELOWNA	LOT 6, BLOCK 16, PLAN KAP1380, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B1528 H17537, MANUFACTURED HOME REG.# 46438	6.51	\$1,018.29
21704214000	2605 BELGO, KELOWNA	LOT 3, BLOCK 17, PLAN KAP1380, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H17537, EXC R/S 7534 .153 AC	8.54	\$1,335.83
21704215000	2505 BELGO, KELOWNA	LOT 4, BLOCK 17, PLAN KAP1380, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H17537 KAP68946 KAP76995	6.51	\$1,018.29
21704220000	3950 BORLAND, KELOWNA	PLAN KAP1862B, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP70445	2.92	\$456.75
21704222000	3527 BEMROSE, KELOWNA	LOT 2, PLAN KAP2005, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 70201	3.60	\$563.11
21704223000	3835 BORLAND, KELOWNA	LOT A, PLAN KAP2645, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.08	\$638.19
21704228000	3625 BEMROSE, KELOWNA	LOT A, PLAN KAP4553, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP59561	7.45	\$1,165.33
21704232000	3647 BEMROSE, KELOWNA	LOT 1, PLAN KAP5787, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 72602	2.94	\$459.87
21704235000	3975 SENGER, KELOWNA	LOT A, PLAN KAP6633, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.62	\$409.82
21704237120	2149 BELGO, KELOWNA	LOT 1, BLOCK 17, PLAN KAP31521, SECTION 11&14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP69980 & KAP73861	10.04	\$1,570.46
21704237130	2327 BELGO, KELOWNA	LOT 1, PLAN KAP33009, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H17537, EPP30052	9.29	\$1,453.14
21704237137	3547 BEMROSE, KELOWNA	LOT 1, PLAN KAP71097, SECTION 26, TOWNSHIP 11, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704237138	2547 BELGO, KELOWNA	LOT A, PLAN KAP76995, SECTION 11, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704243000	2455 WALBURN, KELOWNA	LOT B, PLAN KAP3238B, SECTION 12, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP68575, PT L B OF PL 1639 S/O ON PL B3238	6.94	\$1,085.55
21704245051	2601 WALBURN, KELOWNA	LOT 2, PLAN KAP62978, SECTION 12, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.11	\$330.05
21704247000	1190 LEWIS, KELOWNA	LOT 9, BLOCK 9, PLAN KAP1380, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 10873, MANUFACTURED HOME REG.# 70462	5.69	\$890.03
21704248000	2290 GARNER, KELOWNA	LOT 2, BLOCK 18, PLAN KAP1380, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.52	\$1,176.28
21704249000	2148 WALBURN, KELOWNA	LOT 4, BLOCK 18, PLAN KAP1380, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	10.44	\$1,633.02
21704254000	1093 TEASDALE, KELOWNA	LOT 8, BLOCK 20, PLAN KAP1380, SECTION 13&14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.17	\$808.69
21704258000	1404 LEWIS, KELOWNA	LOT 2, PLAN KAP1926, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H16654, MANUFACTURED HOME REG.# 52828	9.97	\$1,559.51
21704261000	1839 WALBURN, KELOWNA	LOT 7, PLAN KAP1926, DISTRICT LOT 508, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.61	\$877.52
21704269002	2015 WALBURN, KELOWNA	LOT 2, PLAN KAP4119, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 20534, 34516, MANUFACTURED HOME REG.# 76344	1.00	\$156.42
21704270003	1959 WALBURN, KELOWNA	LOT B, PLAN KAP91170, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704310500	2021 WALBURN, KELOWNA	LOT A, PLAN KAP34516, SECTION 13, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42 2

21704315000	3855 EAST KELOWNA, KELOWNA	LOT 13, PLAN KAP665, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 20082 & KAP44096	4.96	\$775.84
21704317000	2075 BELGO, KELOWNA	LOT 9, BLOCK 17, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 19507 & KAP69980	3.07	\$480.21
21704318001	1865 BELGO, KELOWNA	LOT 11, BLOCK 17, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 32086	8.04	\$1,257.62
21704319000	2280 HOLLYWOOD, KELOWNA	LOT 12, BLOCK 17, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H13888 KAP52999	1.67	\$261.22
21704324000	1650 GEEN, KELOWNA	LOT 3, BLOCK 19, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.64	\$256.53
21704325001	1390 GEEN, KELOWNA	LOT A, PLAN KAP90868, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.27	\$824.33
21704327004	1595 TEASDALE, KELOWNA	LOT B, PLAN EPP32484, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.87	\$448.93
21704329000	1409 TEASDALE, KELOWNA	LOT 8, BLOCK 19, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 18554	1.00	\$156.42
21704330000	1555 TEASDALE, KELOWNA	LOT 10, BLOCK 19, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EX PT INCL IN PL ATTACHED TO DD188738F	1.04	\$162.68
21704334001	1225 TEASDALE, KELOWNA	LOT 6, BLOCK 20, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 23119	3.66	\$572.50
21704335000	1103 TEASDALE, KELOWNA	LOT 7, BLOCK 20, PLAN KAP1380, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.17	\$339.43
21704343000	2270 HOLLYWOOD, KELOWNA	LOT A, PLAN KAP1845, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704344000	2015 BELGO, KELOWNA	LOT B, PLAN KAP1845, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN EPP76229	8.87	\$1,387.45
21704345000	1525 GEEN, KELOWNA	LOT A, PLAN KAP1846, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.45	\$226.81
21704350000	1469 TEASDALE, KELOWNA	LOT 1, PLAN KAP4384, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.19	\$1,124.66
21704351000	1429 TEASDALE, KELOWNA	LOT 2, PLAN KAP4384, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704360093	3754 EAST KELOWNA, KELOWNA	LOT B, PLAN KAP84170, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 14820	6.87	\$1,074.61
21704360267	1708 GEEN, KELOWNA	LOT 1, PLAN KAP82075, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 103088	2.05	\$320.66
21704360268	1605 GEEN, KELOWNA	LOT 2, PLAN KAP82075, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.99	\$1,093.38
21704360354	1950 BELGO, KELOWNA	LOT 2, PLAN KAP25528, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	14.26	\$2,230.55
21704360527	3795 EAST KELOWNA, KELOWNA	LOT A, PLAN KAP58793, SECTION 14, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 64814	1.72	\$269.04
21704364000	2995 DUNSTER, KELOWNA	LOT 6, PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, N 378 FT L 6	1.00	\$156.42
21704365000	3098 EAST KELOWNA, KELOWNA	LOT 6, PLAN KAP187, PART N1/2, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, PORTION EXC NLY 378 FT	1.08	\$168.93
21704366000	3002 EAST KELOWNA, KELOWNA	LOT 6, PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, W 1/2 OF THE S 1/2 OF L 6	2.39	\$373.84

21704367000	2855 DUNSTER, KELOWNA	LOT 7, PLAN KAP187, PART N1/2, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP77776	15.87	\$2,482.39
21704368000	3152 EAST KELOWNA, KELOWNA	LOT 7, PLAN KAP187, PART S1/2, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 11658	13.29	\$2,078.82
21704369000	2795 DUNSTER, KELOWNA	LOT 8, PLAN KAP187, PART N1/2, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	17.25	\$2,698.25
21704370002	3250 EAST KELOWNA, KELOWNA	LOT B, PLAN EPP54381, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	13.16	\$2,058.49
21704372000	3208 REID, KELOWNA	LOT 18, PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, N 740.8 FT L 18	6.07	\$949.47
21704375000	3350 POOLEY, KELOWNA	LOT 20, PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B1536 B1720 5512	3.62	\$566.24
21704379000	3073 DUNSTER, KELOWNA	LOT 12, PLAN KAP665, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.89	\$608.47
21704380000	3502 EAST KELOWNA, KELOWNA	LOT 11, PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, PORTION SHOWN ON PL B716	8.21	\$1,284.21
21704381000	2947 EAST KELOWNA, KELOWNA	LOT 1, PLAN KAP736, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.42	\$1,160.64
21704382000	2981 EAST KELOWNA, KELOWNA	LOT 2, PLAN KAP736, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.78	\$904.11
21704385000	3072 EAST KELOWNA, KELOWNA	LOT 6, PLAN KAP821B, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, E 1/2 OF S 1/2 OF L 6 PL 187 S/O PL B821	1.33	\$208.04
21704386002	3652 EAST KELOWNA, KELOWNA	LOT 12, PLAN KAP187, PART E1/2, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, PORTION (PL B900)	1.07	\$167.37
21704387000	3183 DUNSTER, KELOWNA	PLAN KAP187, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, N 1/2 OF S 1/2 OF LOT 5 SHOWN ON PL B1156, MANUFACTURED HOME REG.# 15739	2.29	\$358.20
21704394000	3582 EAST KELOWNA, KELOWNA	LOT B, PLAN KAP1670, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.19	\$342.56
21704396000	2960 MCCULLOCH, KELOWNA	LOT B, PLAN KAP1703, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B4658	4.42	\$691.38
21704400000	3430 POOLEY, KELOWNA	LOT B, PLAN KAP1725, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP53451	10.32	\$1,614.25
21704402000	3251 EAST KELOWNA, KELOWNA	LOT 1, PLAN KAP3379, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.89	\$608.47
21704404000	3260 POOLEY, KELOWNA	LOT 3, PLAN KAP3379, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	9.13	\$1,428.11
21704412000	3288 REID, KELOWNA	LOT A, PLAN KAP4618, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B7432	11.02	\$1,723.75
21704416000	3329 EAST KELOWNA, KELOWNA	LOT 1, PLAN KAP5512, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.47	\$386.36
21704418000	3375 DALL, KELOWNA	LOT 1, PLAN KAP6585, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.44	\$538.08
21704420000	3060 POOLEY, KELOWNA	Lot 2, Plan KAP6585, Section 15, Township 26, Osoyoos Div of Yale Land District, Except Plan EPP90643	2.15	\$336.30
21704423190	3350 EAST KELOWNA, KELOWNA	LOT 1, PLAN KAP30593, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704423192	3310 EAST KELOWNA, KELOWNA	LOT 2, PLAN KAP30593, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	11.89	\$1,859.83
21704423198	3120 POOLEY, KELOWNA	LOT B, PLAN KAP34888, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	9.08	\$1,420.29
21704423205	3480 POOLEY, KELOWNA	LOT A, PLAN KAP53451, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21704423207	3367 REID, KELOWNA	LOT B, PLAN KAP55650, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.86	\$290.94 24

21704423209	3360 REID, KELOWNA	LOT 2, PLAN KAP56635, SECTION 15, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.48	\$700.76
21704428000	3395 NEID, KELOWNA	LOT 26, PLAN KAP187, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B129, S 1/2 OF LOT, MANUFACTURED HOME REG.# B02269	1.00	\$156.42
21704432000	3194 DUNSTER, KELOWNA	LOT 5, PLAN KAP665, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.94	\$303.45
21704433000	3172 DUNSTER, KELOWNA	LOT 6, PLAN KAP665, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.17	\$183.01
21704436000	1 - 3042 DUNSTER, KELOWNA	LOT 9, PLAN KAP665, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.67	\$261.22
21704525228	2877 EAST KELOWNA, KELOWNA	LOT B, PLAN KAP33697, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.26	\$197.09
21704525503	2690 BEWLAY, KELOWNA	LOT 1, PLAN KAP56199, SECTION 16, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.20	\$500.54
21704574000	2990 DUNSTER, KELOWNA	PLAN KAP1353B, PART SE1/4, SECTION 21, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, THAT PART OF THE FRACTIONAL	9.71	\$1,518.84
21704591000	2934 DUNSTER, KELOWNA	LOT C, PLAN KAP1700, SECTION 22, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.88	\$1,232.59
21704805214	2960 DUNSTER, KELOWNA	LOT 1, PLAN KAP73437, SECTION 22, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	11.13	\$1,740.95
21704825001	1 - 1368 TEASDALE, KELOWNA	LOT 3, PLAN KAP2329, SECTION 23, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 4697, 34964, H12752	21.79	\$3,408.39
21704898001	879 HIGHWAY 33, KELOWNA	LOT 1, PLAN EPP32580, SECTION 23&24, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.75	\$899.42
21705479000	3363 SPRINGFIELD, KELOWNA	LOT 5, PLAN KAP1802, SECTION 24, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H8383, H12752, KAP88622	1.00	\$156.42
21705502130	811 HIGHWAY 33, KELOWNA	LOT A, PLAN KAP23321, SECTION 24, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP88565	1.21	\$189.27
21705502305	1151 LEWIS, KELOWNA	LOT A, PLAN KAP33567, SECTION 24, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.57	\$245.58
21705502310	881 HIGHWAY 33, KELOWNA	LOT B, PLAN KAP33567, SECTION 24, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP89364, EPP7143	8.43	\$1,318.62
21705503005	688 WEBSTER, KELOWNA	LOT 1, PLAN KAP92447, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21705510000	920 HARTMAN, KELOWNA	LOT 3, PLAN KAP731, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, C OF T 143842F	5.77	\$902.54
21705511000	1130 HARTMAN, KELOWNA	LOT 4, PLAN KAP731, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP78162	1.09	\$170.50
21705512000	690 MUGFORD, KELOWNA	LOT 3, PLAN KAP603, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, PORTION SHOWN ON PL B797	4.32	\$675.73
21705513004	1120 GIBSON, KELOWNA	LOT B, PLAN EPP11757, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.28	\$669.48
21705514000	1145 MORRISON, KELOWNA	LOT 2, PLAN KAP1515, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.63	\$254.96
21705519002	1610 SWAINSON, KELOWNA	LOT 1, PLAN KAP77945, SECTION 25 & 30, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 27	10.30	\$1,611.13
21705524000	1308 MCKENZIE, KELOWNA	LOT 12, PLAN KAP1760, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B4687 & KAP77650	4.42	\$691.38
21705530000	1550 SWAINSON, KELOWNA	LOT 1, PLAN KAP77944, SECTION 25 & 30, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 27	13.42	\$2,099.16
21705548000	1090 MCKENZIE, KELOWNA	LOT 2, PLAN KAP4586, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B7112 19263 20308	18.71	\$2,926.62

21705561000	690 HARTMAN, KELOWNA	LOT A, PLAN KAP5499, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP60758, KAP87365	16.60	\$2,596.57
21705579469	1045 EL PASO, KELOWNA	LOT 22, PLAN KAP22986, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.95	\$930.70
21705579575	839 HARTMAN, KELOWNA	LOT 2, PLAN KAP29183, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP58413	11.16	\$1,745.65
21705579684	837 HARTMAN, KELOWNA	LOT A, PLAN KAP35135, SECTION 25, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.66	\$416.08
21706374002	563 VALLEY, KELOWNA	LOT 1, PLAN EPP32871, SECTION 32, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC'S 28 & 33	1.00	\$156.42
21706470000	483 VALLEY, KELOWNA	LOT 1, BLOCK 9, PLAN KAP896, SECTION 32, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.47	\$855.62
21706471000	463 VALLEY, KELOWNA	LOT 2, BLOCK 9, PLAN KAP896, SECTION 32&33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.55	\$242.45
21706499001	445 VALLEY, KELOWNA	LOT 3, BLOCK 9, PLAN KAP896, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 13784 23545	3.75	\$586.58
21706501000	2224 ROJEM, KELOWNA	LOT 4, BLOCK 9, PLAN KAP896, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.06	\$322.23
21706502000	389 VALLEY, KELOWNA	LOT 5, BLOCK 9, PLAN KAP896, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.17	\$652.27
21706504000	355 VALLEY, KELOWNA	LOT 7, BLOCK 9, PLAN KAP896, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B3900	2.98	\$466.13
21706507000	2429 LONGHILL, KELOWNA	LOT 14, BLOCK 9, PLAN KAP1068, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.01	\$1,096.50
21706508000	2449 LONGHILL, KELOWNA	LOT 15, BLOCK 9, PLAN KAP1068, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B6691	1.46	\$228.37
21706510000	120 MAIL, KELOWNA	LOT 15, BLOCK 17, PLAN KAP1068, SECTION 33&34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.80	\$1,220.08
21706511000	102 MAIL, KELOWNA	LOT 16, BLOCK 17, PLAN KAP1068, SECTION 33&34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 18945	8.44	\$1,320.18
21706515000	545 RIFLE, KELOWNA	LOT 7, BLOCK 21, PLAN KAP1249, SECTION 33&34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.11	\$955.73
21706524000	30 - 2300 SILVER, KELOWNA	LOT 8, BLOCK 22, PLAN KAP1249, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.43	\$536.52
21706527000	2255 ROJEM, KELOWNA	LOT 11, BLOCK 22, PLAN KAP1249, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.42	\$691.38
21706528000	2309 ROJEM, KELOWNA	LOT 12, BLOCK 22, PLAN KAP1249, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.36	\$681.99
21706529000	2323 ROJEM, KELOWNA	LOT 13, BLOCK 22, PLAN KAP1249, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.04	\$162.68
21706533000	2379 ROJEM, KELOWNA	LOT 17, BLOCK 22, PLAN KAP1249, SECTION 33, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B6651	1.97	\$308.15
21706554140	2400 LONGHILL, KELOWNA	LOT A, PLAN KAP26592, SECTION 4&33, TOWNSHIP 23, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 26	2.41	\$376.97
21706557002	2710 LONGHILL, KELOWNA	LOT B, PLAN KAP88097, SECTION 34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21706612470	2512 LONGHILL, KELOWNA	LOT A, PLAN KAP26258, SECTION 33&34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 40166, MANUFACTURED HOME REG.# 85193	13.49	\$2,110.11
21706612672	2614 LONGHILL, KELOWNA	LOT 1, PLAN KAP40166, SECTION 34, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.17	\$339.43
21706645000	610 MOYER, KELOWNA	LOT 26, PLAN KAP425, SECTION 35&36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.61	\$564.68
21706647000	610 CORNISH, KELOWNA	LOT 28, PLAN KAP425, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & SEC 36	7.94	\$1,241.97
21706658000	355 CORNISH, KELOWNA	LOT 41, PLAN KAP425, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.64	\$569.37
21706661000	298 CORNISH, KELOWNA	LOT 45, PLAN KAP425, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.31	\$674.17 247

21706723000	310 FITZPATRICK, KELOWNA	LOT 2, PLAN KAP9092, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21706773003	1685 RUTLAND, KELOWNA	LOT 3, PLAN KAP18313, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.05	\$320.66
21706773440	585 CORNISH, KELOWNA	LOT 1, PLAN KAP19142, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.86	\$603.78
21706774244	245 CORNISH, KELOWNA	LOT B, PLAN KAP43294, SECTION 35, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.16	\$337.87
21706776850	2105 MORRISON, KELOWNA	LOT 1, PLAN KAP425, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP77337	7.05	\$1,102.76
21706776900	1990 MCKENZIE, KELOWNA	LOT 2, PLAN KAP425, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP78155, KAP92012	10.58	\$1,654.92
21706777000	1900 MCKENZIE, KELOWNA	LOT 3, PLAN KAP425, PART N1/2, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.20	\$813.38
21706778000	1893 MORRISON, KELOWNA	LOT 3, PLAN KAP425, PART S1/2, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	2.63	\$411.38
21706788000	1304 MORRISON, KELOWNA	LOT 10, PLAN KAP425, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.59	\$1,187.23
21706789000	819 MOYER, KELOWNA	LOT 11, PLAN KAP425, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 82699	3.98	\$622.55
21706792000	2062 MORRISON, KELOWNA	LOT 14, PLAN KAP425, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	4.79	\$749.25
21706794000	2 - 685 OLD VERNON, KELOWNA	LOT 16, PLAN KAP425, SECTION 35 & 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	3.84	\$600.65
21706796000	745 CORNISH, KELOWNA	LOT 18, PLAN KAP425, SECTION 35 & 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	6.35	\$993.27
21706799510	1425 MORRISON, KELOWNA	LOT B, PLAN EPP15301, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.41	\$1,159.07
21706803000	1350 HORNING, KELOWNA	LOT 20, PLAN KAP1760, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP53546	14.63	\$2,288.42
21706805005	1920 MCCURDY, KELOWNA	LOT 3, PLAN KAP91486, SECTION 31, TOWNSHIP 27, OSOYOOS DIV OF YALE LAND DISTRICT	8.19	\$1,281.08
21706806000	1431 LATTA, KELOWNA	LOT 24, PLAN KAP1760, SECTION 36&31, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, & TWP 27	1.00	\$156.42
21706807001	1305 LATTA, KELOWNA	LOT 25, PLAN KAP1760, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN B4218 & 33998	7.55	\$1,180.97
21706810002	1341 LATTA, KELOWNA	LOT 28, PLAN KAP1760, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 31944	9.96	\$1,557.94
21706817001	1331 MCCURDY, KELOWNA	LOT 1, PLAN KAP4060, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 30660 KAP67186	19.59	\$3,064.27
21706819000	1545 MCCURDY, KELOWNA	LOT 3, PLAN KAP4060, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP56029 & KAP63091	15.92	\$2,490.21
21706820000	1445 LATTA, KELOWNA	LOT 25, PLAN KAP4218B, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	5.22	\$816.51
21706828500	1750 MCKENZIE, KELOWNA	LOT B, PLAN KAP25654, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP90335	10.24	\$1,601.74
21706828524	1700 MCKENZIE, KELOWNA	LOT D, PLAN KAP25654, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	7.36	\$1,151.25
21706828618	1301 LATTA, KELOWNA	LOT 1, PLAN KAP33998, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, HERETO IS ANNEXED EASEMENT CA3247673 OVER LOT 25 PL 1760 EXC PLANS B4218 & 33998 THIS CERTIFICATE OF TITLE MAY BE AFFECTED BY THE AGRICULTURAL LAND COMMISSION ACT; SEE PL M11328	1.00	\$156.42
21706828642	837 MCCURDY, KELOWNA	LOT 2, PLAN EPP14181, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42 ,

21706828644	833 MCCURDY, KELOWNA	LOT 3, PLAN EPP14181, SECTION 36, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21706886003	1 - 2025 TREETOP, KELOWNA	LOT 1, PLAN KAP1760, SECTION 19, TOWNSHIP 27, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 26646, & SEC 30 & EXC PL 30907, MANUFACTURED HOME REG.# 13479	9.58	\$1,498.50
21706960185	5681 LAKESHORE, KELOWNA	LOT 1, PLAN EPP37698, SECTION 16, TOWNSHIP 28, SIMILKAMEEN DIV OF YALE LAND DISTRICT	1.00	\$156.42
21707143000	559 BARNABY, KELOWNA	LOT 3, PLAN KAP1743, SECTION 25, TOWNSHIP 28, SIMILKAMEEN DIV OF YALE LAND DISTRICT	1.00	\$156.42
21707161000	4860 LAKESHORE, KELOWNA	PARCEL A, PLAN KAP1722, SECTION 25, TOWNSHIP 29, SIMILKAMEEN DIV OF YALE LAND DISTRICT, SHOWN ON PL B5804 OF LOT 3	3.21	\$502.11
21707264002	1456 DEHART, KELOWNA	LOT 1, PLAN KAP1837, SECTION 31&32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 21254 28408	11.58	\$1,811.34
21707269000	999 CRAWFORD, KELOWNA	LOT 1, PLAN KAP13170, SECTION 31, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 20569	11.85	\$1,853.58
21707270072	1265 CRAWFORD, KELOWNA	LOT 2, PLAN KAP21104, SECTION 31, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21707270074	1285 CRAWFORD, KELOWNA	LOT 3, PLAN KAP21104, SECTION 31&32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21707278000	4551 STEWART, KELOWNA	LOT 220, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	2.89	\$452.05
21707287000	4335 STEWART, KELOWNA	LOT 229, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN EPP89865	3.02	\$472.39
21707290000	4285 STEWART, KELOWNA	LOT 232, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN EPP89865	6.85	\$1,071.48
21707291000	4202 BEDFORD, KELOWNA	LOT 233, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN H9875	9.74	\$1,523.53
21707293000	4250 STEWART, KELOWNA	LOT 238, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	1.63	\$254.96
21707296000	1475 DEHART, KELOWNA	LOT 246, PLAN KAP1247, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 6779	1.00	\$156.42
21707304000	4132 BEDFORD, KELOWNA	LOT 3, PLAN KAP15793, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	6.38	\$997.96
21707304010	1485 DEHART, KELOWNA	LOT 1, PLAN KAP20969, SECTION 32, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	1.21	\$189.27
21707351000	4305 JAUD, KELOWNA	LOT 5, PLAN KAP6171, SECTION 34, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN EPP120634	11.06	\$1,730.01
21707362338	2950 BALLDOCK, KELOWNA	LOT 10, PLAN KAP74510, SECTION 34, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21709533000	2517 GALE, KELOWNA	LOT 2, PLAN KAP10810, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 19044, H15414	6.08	\$951.03
21709533052	2499 GALE, KELOWNA	LOT C, PLAN KAP19044, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21709533053	2475 GALE, KELOWNA	LOT D, PLAN KAP19044, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21709533054	2449 GALE, KELOWNA	LOT E, PLAN KAP19044, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21709533055	2427 GALE, KELOWNA	LOT F, PLAN KAP19044, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21709533057	2555 GALE, KELOWNA	LOT A, PLAN EPP65442, DISTRICT LOT 32A, OSOYOOS DIV OF YALE LAND DISTRICT	1.39	\$217.42
21710392000	2240 MAYER, KELOWNA	LOT 1, PLAN KAP2332, DISTRICT LOT 128, OSOYOOS DIV OF YALE LAND DISTRICT	20.16	\$3,153.43

21710393000	2050 BYRNS, KELOWNA	LOT 1, PLAN KAP2830, DISTRICT LOT 128, SECTION 17, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT,	19.86	\$3,106.50
21710410000	1756 BYRNS, KELOWNA	LOT 23, PLAN KAP415, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT, EX E 4.14 CHNS, MANUFACTURED HOME REG.# 49222	11.34	\$1,773.80
21710411000	1890 BYRNS, KELOWNA	LOT 23, PLAN KAP415, DISTRICT LOT 129, SECTION 19, TOWNSHIP 26, OSOYOOS DIV OF YALE LAND DISTRICT, E 4.14 CHNS L 23, MANUFACTURED HOME REG.# 105820	4.35	\$680.43
21710414000	1756 BYRNS, KELOWNA	LOT 26, PLAN KAP415, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT, EX E 4.14 CHNS	10.62	\$1,661.18
21710518000	1650 BYRNS, KELOWNA	LOT 2, PLAN KAP78759, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT	3.61	\$564.68
21710519852	2225 SPALL, KELOWNA	LOT B, PLAN KAP40808, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT	13.03	\$2,038.15
21710519854	1980 BYRNS, KELOWNA	LOT C, PLAN KAP40808, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT, MANUFACTURED HOME REG.# 20597	10.95	\$1,712.80
21710519856	1990 BYRNS, KELOWNA	LOT D, PLAN KAP40808, DISTRICT LOT 129, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21710531000	1909 BYRNS, KELOWNA	LOT 15, PLAN KAP415, DISTRICT LOT 130, OSOYOOS DIV OF YALE LAND DISTRICT, E 10 ACRES OF L 15	6.34	\$991.70
21710543001	2589 BENVOULIN, KELOWNA	LOT 1, PLAN KAP3357, DISTRICT LOT 130, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 15515 20646 23696	5.66	\$885.34
21710549000	2029 BYRNS, KELOWNA	LOT 2, PLAN KAP8615, DISTRICT LOT 130, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN 16912	7.94	\$1,241.97
21710589113	1909 BYRNS, KELOWNA	LOT B, PLAN KAP67173, DISTRICT LOT 130, OSOYOOS DIV OF YALE LAND DISTRICT	23.50	\$3,675.87
21711501711	4345 HOBSON, KELOWNA	LOT 25, PLAN KAP27559, DISTRICT LOT 167, OSOYOOS DIV OF YALE LAND DISTRICT, EXCEPT PLAN KAP64149 KAP68293 KAP73487 EPP16570 EPP46682	1.00	\$156.42
21711502309	4340 HOBSON, KELOWNA	LOT A, PLAN KAP69885, DISTRICT LOT 167, OSOYOOS DIV OF YALE LAND DISTRICT	1.00	\$156.42
21712185885	4485 SALLOWS, KELOWNA	LOT 184, PLAN KAP1247, DISTRICT LOT 359, SECTION 33, TOWNSHIP 29, OSOYOOS DIV OF YALE LAND DISTRICT	2.04	\$319.10
21712199082	4380 WALLACE HILL, KELOWNA	LOT 2, PLAN KAP39632, DISTRICT LOT 360, OSOYOOS DIV OF YALE LAND DISTRICT	4.70	\$735.17
21712199103	2740 HARVARD, KELOWNA	LOT 14, PLAN KAP62784, DISTRICT LOT 360, OSOYOOS DIV OF YALE LAND DISTRICT	3.11	\$486.47
305			1,757.88	\$274,967.60

Report to Council

Date:	April 24, 2023
То:	Council
From:	City Manager
Subject:	Rail Trail Access Permit with OKIB
Department:	Infrastructure

Recommendation:

THAT Council receives for information the report from the Infrastructure General Manager dated April 24, 2023, regarding the Rail Trail Access Permit between Kelowna and the Okanagan Indian Band;

AND THAT the Mayor and City Clerk be authorized to execute the Rail Trail Access Permit on behalf of the City of Kelowna.

Purpose:

To execute an agreement where Kelowna constructs, operates, and maintains the Okanagan Rail Trail on a Permit Area authorized by the Okanagan Indian Band on Indian Reserve No. 7.

Background:

In 2020, City of Kelowna staff entered negotiations with the District of Lake Country (DLC) and Okanagan Indian Band (OKIB) staff to craft agreements on mutually shared services and projects that would benefit each community. This work culminated in the Memorandum of Understanding (MOU) between the parties which was signed in February 2022.

Over the past year, the negotiation of several legal agreements has been conducted between the three partners and the Government of Canada. The parties are actively finalizing six separate legal agreements for the following subjects

MOU Ref #	Agreement Description	Status
1	Water supply agreement between Kelowna and Lake	Complete
	Country	
2&3	Water and Wastewater Service Agreement between	Subject of separate
	Kelowna and OKIB IR7	concurrent report
4a	Sewer permit agreement between Kelowna, OKIB and	Complete
	Canada	
4b	Rail Trail Access Permit between Kelowna and OKIB	Subject of this report
4C	Commonwealth Road permit between Kelowna, OKIB and	Under development
	Canada	
5	Sewer Agreement between Kelowna and Lake Country	Complete

Discussion:

The Rail Trail Access Permit (MOU Reference #4b) between Kelowna and OKIB is ready for execution and attached to this report.

<u>Service Area</u>: The Okanagan Rail Trail is a recreational multi-use pathway extending from Okanagan Lake in Kelowna to the District of Coldstream. Within IndianReserve#7, the Rail Trail will be approximately 4.0 metres wide and run 2,300 metres in length, constructed as a continuous, compacted aggregate or asphalt paved trail for the use of pedestrians, bicycles, e-bikes, wheelchairs and other non-motorized modes of transportation, as well as motorized scooters or similar mobility assistance devices used exclusively by persons with disabilities.

The "Permit Area" is part of 7.0125 hectares of land awaiting transfer to OKIB by the Government of Canada. This permit will allow construction to proceed upon the land transfer to OKIB.

Under this permit, OKIB authorizes the non-exclusive use of the Permit Area:

- 1. For the pass along and over and upon the Works Area for public recreation purposes: by foot, bike, e-bike, wheelchair, or other non-motorized modes of transportation as well as motorized scooters or similar mobility assistance devices used exclusively by persons with disabilities.
- 2. For Kelowna, its employees, contractors, subcontractors, agents, and invitees (including all members of the public), to construct, operate and maintain the Rail Trail.
- 3. Where Kelowna will comply with all applicable Laws.

Term: 5 years.

<u>Costs</u>: Kelowna pays \$10.00 to OKIB on the Commencement Date, the receipt and sufficiency of which are hereby acknowledged by the parties. All construction costs are the responsibility of the City of Kelowna and its partners.

Conclusion:

The Rail Trail Access Permit is one of a suite of agreements envisioned in the 2022 MOU between Kelowna, DLC and OKIB. The commitments, both financial and technical, are consistent with the broader goals of resolving the many issues being addressed by the MOU. The Rail Trail Permit clarifies key terms
City Manager April 24, 2023 Page 3 of 3 Pages

and allows the City to commit to providing the construction, maintenance, and limitations to OKIB as envisioned in the MOU.

Internal Circulation:

Financial Planning Communications

Considerations applicable to this report:

Communications Comments:

A formal signing ceremony will be held to jointly complete several OKIB, DLC and Kelowna agreements.

Considerations not applicable to this report:

Legal/Statutory Authority: Legal/Statutory Procedural Requirements: Existing Policy: Financial/Budgetary Considerations: External Agency/Public Comments:

Submitted by: M. Logan, Infrastructure General Manager

Approved for inclusion: D. Gilchrist, City Manager

Attachment 1 – Rail Trail Permit Agreement 4b Attachment 2 – Rail Trail Access Permit

cc: Divisional Director, Corporate Strategic Services Acting Division Director, Financial Services

RAIL TRAIL PERMIT

BETWEEN:

OKANAGAN INDIAN BAND

AND:

CITY OF KELOWNA

Duck Lake Indian Reserve No. 7

Dated for Reference: April 24, 2023

Copy _____ of _____

RAIL TRAIL PERMIT

This permit, dated for reference April 24th 2023, is made between:

OKANAGAN INDIAN BAND, a "band" within the meaning of the *Indian Act* having an office at 12420 Westside Road, Vernon, BC, V1H 2A4

("OKIB")

and:

CITY OF KELOWNA, a municipality under the laws of British Columbia having an office at 1435 Water Street, Kelowna, BC V1Y 1J4

("Kelowna")

BACKGROUND:

- A. The Reserve has been set apart for the use and benefit of OKIB;
- **B.** Kelowna has requested to use the Permit Area as part of the Okanagan Rail Trail;
- **C.** OKIB has agreed to authorize Kelowna to construct, operate and maintain a trail on the Permit Area on the terms and conditions set out in this Permit; and
- **D.** The Council consented to the issuance of this Permit, and authorized its signatories to execute this Permit on behalf of OKIB, by way of resolution attached as Schedule A.

NOW THEREFORE, for mutual consideration, the Parties agree as follows:

1. **DEFINITIONS**

1.1 In this Permit, including the recitals, the following terms have the meanings ascribed to them in this section:

"Adjacent Area" means the approximately 1.5 metre area on either side of the Works Area.

"**Authority**" means any federal, provincial, municipal, OKIB or other governmental authority having jurisdiction in respect of the Permit Area, or the use of the Permit Area, including any utility company lawfully acting under its statutory power.

"Authorized Uses" means the uses referred to in subsection 3.1.1.

"**Commencement Date**" means the date that the Permit Area is set apart as a reserve under section 4 of the *Addition of Lands to Reserves and Reserve Creation Act*, S.C. 2018, c. 27, s. 675.

"**Construct**" includes to lay down, construct, install, erect, effect major repairs or replacement, alter, upgrade and reconstruct, but does not include regular ongoing maintenance required under section 3.8, and "**Construction**" has a similar meaning when the context requires.

"Construction and Environmental Management Plan" means:

- (a) plans, design briefs and construction specifications and standards that are consistent with those used for other portions of the Okanagan Rail Trail off of Reserve, prepared and certified by an Engineer, on the basis that they may be relied upon by the Parties; and
- (b) any other documents about the Works reasonably required by OKIB which comply with or are consistent with applicable Laws and includes plans and any mitigations measures required to address how any impacts on the Environment during construction or removal of the Works will be managed.

"**Contaminant**" includes any toxic substance, deleterious substance, hazardous substance, hazardous waste, hazardous recyclable, ozone-depleting substance, halocarbon, pesticide, waste, designated material or substance as defined in or pursuant to any applicable Environmental Laws.

"Council" means OKIB's "council of the band" within the meaning of the Indian Act.

"**Engineer**" means a person who is licensed to practice as an engineer in the province of British Columbia.

"Environment" has the meaning given it in the *Canadian Environmental Protection Act, 1999*, S.C. 1999, c. 33.

"Environmental Laws" means:

- (a) any Laws relating, in whole or in part, to the assessment and protection of the Environment; and
- (b) any decisions, determinations, mitigation measures, standards, codes, guidelines or environmental protection measures made pursuant to those Laws.

"Indian Act" means the Indian Act, R.S.C. 1985, c. I-5.

"Laws" means all laws, statutes, regulations, codes and by-laws, as amended or replaced from time to time.

"Okanagan Rail Trail" means the recreational multi-use pathway travelling from Kelowna to the District of Coldstream, which is approximately four (4.0) metres wide and spans 2,300 metres within the Reserve, constructed as a continuous, compacted aggregate or asphalt paved trail, for the use of pedestrians, bicycles, e-bikes and other non-motorized modes of transportation, as well as wheelchairs, motorized scooters or similar mobility assistance devices used exclusively by persons with disabilities.

"Party" means a party to this Permit and "Parties" means more than one of them.

"**Permit**" means this agreement, and all Schedules attached to it, as amended from time to time.

"Permit Area" means the area more particularly known and described as:

In the Province of British Columba In Osoyoos Division of Yale District

All of the Railway through Duck Lake Indian Reserve No. 7 as shown on Plan RR1222A recorded in the OKIB Lands Surveys Records in Ottawa.

Containing about 17.36 acres (7.025 hectares).

"**Person**" includes any individual, partnership, firm, company, corporation, incorporated or unincorporated association or society, co-tenancy, joint venture, syndicate, fiduciary, estate, trust, bank, government, governmental or quasi-governmental agency, board, commission or authority, organization or any other form of entity however designated or constituted, or any group, combination or aggregation of any of them.

"**Release**" includes discharge, dispose of, spray, inject, inoculate, abandon, deposit, spill, leak, leach, seep, pour, emit, empty, throw, dump, place or exhaust.

"**Reserve**" means Duck Lake Indian Reserve No.7, which has been set apart for the use and benefit of OKIB.

"**Schedule**" means an attachment to this Permit labeled as a Schedule, which forms part of and is integral to the Permit.

"**Taxes**" means any tax of an Authority applicable to the granting of this Permit or the payment of Fees.

"**Term**" means the period starting on the Commencement Date and expiring on the date Kelowna no longer requires the Permit Area for any of the Authorized Uses, unless this Permit ends early.

"Willful Misconduct" means any act or failure to act (whether sole, joint or concurrent) by a Party that was intended to cause the harmful consequences to the safety or property of a Person which the Party knew, or should have known, would result from such act or omission.

"**Works**" means the components of the Okanagan Rail Trail that include the paved pathway, subgrade to the pathway, drainage system, road crossings, benches, pedestrian bridges, rock fall stabilization, erosion control, stormwater drainage components, fencing and trail signage. The works also include interpretive signage to communicate various natural issues, heritage and culture.

"**Works Area**" means the approximately four (4) metre wide portion of the Permit Area containing the former rail bed on which the Okanagan Rail Trail is to be constructed, as generally shown on the sketch attached as Schedule B.

2. INTERPRETATION AND GENERAL PROVISIONS

- 2.1 **Definitions** Defined words are capitalized for ease of reference. A defined word may be read as having an appropriate corresponding meaning when it is used in the singular, plural, noun or verb form.
- 2.2 **Parts of the Permit** These are the parts of this Permit: article (1.); section (1.1); subsection (1.1.1); and paragraph (1.1.1.1). Unless stated otherwise, any reference in this Permit to an article, section, subsection, or paragraph means the appropriate part of this Permit.
- 2.3 **Headings** All headings in this Permit have been inserted as a matter of convenience and for reference only and in no way define, limit, enlarge, modify or explain the scope or meaning of the Permit or any of its provisions.

2.4 Extended Meaning

- 2.4.1 A word in the singular form may be read in the plural form if the context allows it and a word in the plural form may be read in the singular form if the context allows it. All genders are included in any gender expressed.
- 2.4.2 The words "include", "includes" and "including" are to be read as if they are followed by the phrase "without limitation".
- 2.4.3 The phrase "this Permit ends" includes an ending by expiration of the Term and an earlier termination. The phrases "earlier termination" and "early termination" include a surrender.
- 2.4.4 The phrase "on the Permit Area" includes in, under and above the Permit Area.
- 2.5 **Joint and Several** If a Party is comprised of more than one Person, then all covenants and agreements of that Party are joint and several.
- 2.6 **Statutes** Any reference to a statute means that statute, and any regulations made under it, all as amended or replaced from time to time.
- 2.7 **Governing Laws** This Permit will be governed by and interpreted in accordance with the applicable Laws of OKIB and of the Province of British Columbia.
- 2.8 **Entire Agreement** This Permit constitutes the entire agreement between the Parties with respect to the subject matter of this Permit and supersedes and revokes any and all previous discussions, negotiations, arrangements, letters of intent, offers and representations. There are no other covenants, agreements, representations or warranties between the Parties whatsoever other than those set out in this Permit.

- 2.9 **Modification** Any modifications of this Permit will be in writing and executed in the same manner as this Permit.
- 2.10 **Time is of the Essence** Time is of the essence in this Permit and time will remain of the essence notwithstanding any extension granted to a Party.
- 2.11 **Severability** If any part of this Permit is declared or held invalid for any reason, the invalidity of that part will not affect the validity of the remainder of the Permit, which will continue in full force and effect and be construed as if this Permit had been executed without the invalid part.
- 2.12 **Survival of Obligations and Rights** If a part of this Permit states that it survives when this Permit ends, then the survival of that part is only to the extent required for the performance of any obligations, and the exercise of any rights, pertaining to it.
- 2.13 **Others Performing Kelowna's Obligations** Kelowna may allow any Person to perform Kelowna's obligations under this Permit, but in doing so Kelowna will ensure performance of such obligations by such Persons and it in no way affects Kelowna's obligation to perform.

3. USE OF THE PERMIT AREA

3.1 Kelowna's Rights to the Permit Area

- 3.1.1 Subject to every other part of this Permit, OKIB hereby authorizes the nonexclusive use of the Permit Area for the Term as follows:
 - 3.1.1.1 On the Works Area, Kelowna, its employees, contractors, subcontractors, agents and invitees (including all members of the public) may:
 - (a) pass along and over and upon the Works Area for public recreation purposes;
 - (b) exercise the rights provided in paragraph 3.1.1.1.a by foot, bike, ebike or other non-motorized modes of transportation as well as wheelchairs, motorized scooters or similar mobility assistance devices used exclusively by persons with disabilities;
 - (c) clear the Works Area and keep it clear of debris and anything which, in the opinion of Kelowna, constitutes or may constitute an obstruction to the Authorized Uses under this Permit;
 - (d) construct, operate and maintain the Works; and in the case of access for the purposes permitted under 3.1.1.1.c and this paragraph, such as for transporting material and equipment, by such methods of motorized vehicles as may be reasonably required; and
 - (e) carry out all activities necessary or incidental to the foregoing purposes.
 - 3.1.1.2 On the Adjacent Area, Kelowna, its employees, contractors, subcontractors and agents may:
 - (a) enter, go, pass along, over and upon the Adjacent Area for the purpose of access to and egress from the Works Area; and

- (b) clear the Adjacent Area and keep it clear of debris and anything which, in the opinion of Kelowna, constitutes or may constitute an obstruction to the Authorized Uses under this Permit.
- 3.1.2 This is a license. The rights provided under this Permit do not, and will not be deemed to, convey or confer on Kelowna any title, fee, estate, or other right "in rem" in the Permit Area.
- 3.1.3 Kelowna will comply with all applicable Laws regarding this Permit, the Permit Area and any activity on the Permit Area and will require and ensure that any other Person on the Permit Area because of Kelowna's rights under this Permit also complies with all applicable Laws regarding this Permit, the Permit Area and any activity on the Permit Area.
- 3.1.4 Kelowna will not cause or permit any nuisance on the Permit Area.
- 3.1.5 Kelowna will not cause or permit the commission of any waste of the Permit Area.
- 3.2 **Prior Rights** This Permit is subject to any existing interest or right given for or attaching to the Permit Area, whether or not Kelowna has notice of such prior interest or right.
- 3.3 **Subsequent Rights** Kelowna acknowledges that OKIB may authorize further use and occupation of the Permit Area, subject to Kelowna's rights under this Permit. If OKIB authorizes any further use or occupation of the Permit Area, OKIB will notify Kelowna of any such use or occupation.
- 3.4 **No Dispositions** Kelowna must not assign, mortgage, or otherwise dispose of any of its interest in this Permit and any purported assignment, mortgage, or disposition is void.
- 3.5 **Representations about the Permit Area and its Authorized Use** Kelowna acknowledges and agrees that OKIB is authorizing Kelowna's use of the Permit Area on an "as is where is" basis and that OKIB, and its officials, servants, employees, agents, contractors, subcontractors or other legal representatives, nor the Council has made any representations or warranties with respect to:
 - 3.5.1 the condition of the Permit Area or any improvements on the Permit Area, including the Permit Area's compliance with any Laws or the presence of Contaminants on the Permit Area;
 - 3.5.2 issues of title or encumbrances affecting title; or
 - 3.5.3 the suitability of the Permit Area for the Authorized Uses.
- 3.6 **Damage to, or Destruction of, Works** Subject to section 3.7, if any Works are damaged or destroyed during the Term, then:
 - 3.6.1 this Permit will not be deemed to have ended; and
 - 3.6.2 Kelowna will repair or replace the Works within a reasonable time and, to the extent possible, to a standard at least substantially equal in quality of material and workmanship to the original material and workmanship.

3.7 Damage to, or Destruction of Works by OKIB

- 3.7.1 If any Works are damaged or destroyed by the negligence or Willful Misconduct of OKIB's employees in the course of carrying out their duties as an employee during the Term, then:
 - 3.7.1.1 OKIB will promptly notify Kelowna of the damage; and

- 3.7.1.2 Kelowna will repair or replace the Works within a reasonable time and, to the extent possible, to a standard at least substantially equal in quality of material and workmanship to the original material and workmanship, the reasonable costs of which will be paid by OKIB to Kelowna.
- 3.7.2 If, to OKIB's knowledge, any Works are damaged or destroyed by the actions of OKIB's contractors, subcontractors or agents during the Term, then:
 - 3.7.2.1 OKIB will promptly notify Kelowna of the damage; and
 - 3.7.2.2 Kelowna will repair or replace the Works within a reasonable time and, to the extent possible, to a standard at least substantially equal in quality of material and workmanship to the original material and workmanship and Kelowna acknowledges that OKIB will not be responsible for the costs of repair and replacement and will seek recovery of such costs from OKIB's contractor, subcontractor or agent.
- 3.8 **Repair & Maintenance –** OKIB will not be required to maintain or make any repairs to any Works. Kelowna will repair and maintain the Works in good order and condition in all respects in accordance with existing Okanagan Rail Trail standards from time to time, provided that Kelowna will not use pesticides or herbicides in doing so.

4. PAYMENTS TO OKIB

- 4.1 **Payments** All payments made by Kelowna to OKIB under section 4.3 of this Permit will be:
 - 4.1.1 paid in Canadian dollars;
 - 4.1.2 paid to OKIB;
 - 4.1.3 paid without any prior demand, set-off, deduction or abatement; and
 - 4.1.4 accompanied by any applicable Taxes.
- 4.2 **Prepaid Fees** Kelowna paid Prepaid Fees of \$10.00 to OKIB on the Commencement Date, the receipt and sufficiency of which are hereby acknowledged by the parties.
- 4.3 **Amounts Owing to OKIB** If, at any time before or after this Permit ends, OKIB incurs any expenses by reason of any failure of Kelowna to perform or observe any of Kelowna's obligations under this Permit, then the amount of each expense, together with interest, accruing from thirty (30) days after receipt of notice of the expense from OKIB, and an administration fee of 15% of the expenses, will be payable to OKIB by Kelowna.
- 4.4 **Arrears to Bear Interest** If any sum owing to OKIB by Kelowna under this Permit is not paid when due, then Kelowna will pay interest on the unpaid amount at the prime lending rate established by the Bank of OKIB, calculated quarterly and compounded semiannually, plus 5% per annum, from the date the amount owing or sum are due until the date that the payment is received. This stipulation for interest will not prejudice or affect any remedies of OKIB under this Permit or otherwise, or be construed to relieve Kelowna from any default in paying any other sum at the time and in the manner specified in this Permit.
- 4.5 **Survival of Article** This Article survives when this Permit ends.

5. CONSTRUCTION

- 5.1 **No Construction or Removal Before Review** Before beginning any Construction or removal of any Works on the Permit Area, or altering the Permit Area in anticipation of such Construction or removal, Kelowna will arrange for an OKIB stewardship/environmental monitor to be present (at Kelowna's cost) during Construction or removal and Kelowna will:
 - 5.1.1 apply to any appropriate Authority for, and obtain, any necessary approvals and authorizations; and
 - 5.1.2 deliver to OKIB a Construction and Environmental Management Plan that indicates that, subject to any required mitigation, the Construction or removal of the Works is not likely to cause any significant adverse environmental effects on the Permit Area.
- 5.2 **Stop Work Orders and Injunctions** If section 5.1 is breached, then, in addition to any other remedy available to OKIB:
 - 5.2.1 OKIB may issue a "stop work order", which OKIB is entitled to post in conspicuous locations on the Permit Area;
 - 5.2.2 OKIB may bar any Person performing any physical activity that is contributing to such breach from the Reserve until such time as the breach is rectified by obtaining all of the required approvals, authorizations and plans required under section 5.1;
 - 5.2.3 Kelowna will promptly remediate any damage to the Permit Area and any other area on the Reserve arising from such breach; and
 - 5.2.4 OKIB is entitled to obtain an injunction from a court of competent jurisdiction against the continuation of such breach, its costs which (including legal costs on a solicitor and own client basis) are to be paid promptly upon notice to Kelowna.
- 5.3 **Release of Liability** Kelowna releases OKIB and its officials, servants, employees, agents, contractors, subcontractors and other legal representatives from any liability associated with their reviews of, and Kelowna's implementation of, any Construction and Environmental Management Plan. This section survives when this Permit ends.
- 5.4 **Construction Compliance** Once all applicable approvals, authorizations and plans referred to in section 5.1 have been obtained, finalized or delivered, as the case may be, for any Works, Kelowna will:
 - 5.4.1 promptly Construct such Works in a proper and workmanlike manner and in accordance with all required approvals, authorizations, plans and determinations and to at least the standards of the portions of the Okanagan Rail Trail located off-Reserve; and
 - 5.4.2 ensure that the site preparation, Construction, operation and decommissioning of the Works, will comply with any mitigation measures, including monitoring and compliance, set out in the Construction and Environmental Management Plan.
- 5.5 **Plans** After the completion of the Works, Kelowna will promptly deliver to OKIB a certificate from the City of Kelowna Engineer certifying that the Works have been constructed in accordance with the Construction and Environmental Management Plan and this Permit and that the standards referred to in subsection 5.4.1 have been met.

6. INSURANCE

6.1 Liability Insurance

- 6.1.1 Kelowna will obtain and maintain commercial general liability insurance against claims for bodily injury (including death), personal injury or property damage arising in connection with its use of the Permit Area. The policy will be written on a commercial general liability basis with liability limits of at least \$5,000,000 per occurrence (or to any higher amount that OKIB reasonably requires by delivery of notice to Kelowna) and with OKIB as an additional insured.
- 6.1.2 The liability insurance policy will contain:
 - 6.1.2.1 an agreement by the insurer that it will not cancel the policy without first giving the additional insured at least thirty (30) days prior notice; and
 - 6.1.2.2 a waiver of subrogation by the insurers against the additional insured.
- 6.1.3 Kelowna will not do anything, or permit or suffer anything to be done that might cause the insurance policy to be invalidated or cancelled or that could affect the right of OKIB to recover for a loss.
- 6.1.4 On the Commencement Date, Kelowna will promptly deliver a certificate evidencing the insurance policy to OKIB, and will deliver to OKIB, at least fifteen (15) days before the expiry of any such insurance, a certificate of renewal, or other evidence satisfactory to each such party, that the insurance has been renewed or replaced.
- 6.1.5 Kelowna will, upon request from OKIB, deliver to OKIB a certified copy of every requested insurance policy.
- 6.2 **Release of Insured Claims** Kelowna releases OKIB and OKIB's officials, servants, employees and other legal representatives from all liability for loss (including economic loss), damage or injury (including any loss, damage or injury that may arise out of the negligence or omission of any of them) in any way caused by or resulting from any of the perils or injury against which it has covenanted in this Permit to insure, except to the extent that such loss, damage or injury is caused by the negligence or Willful Misconduct of OKIB, or OKIB's officials, servants, employees, and other legal representatives in the course of carrying out their duties.
- 6.3 **Cancellation of Insurance** Kelowna will immediately notify OKIB if any insurance policy required under this Permit is:
 - 6.3.1 cancelled or threatened to be cancelled, and promptly deliver evidence of a certificate of renewal or other evidence satisfactory to such Party that the insurance has been renewed or replaced at least fifteen (15) days before the cancellation of such policy; or
 - 6.3.2 suspended, and promptly provide evidence to such Party that the policy has been reinstated or replaced.

7. ENVIRONMENT

7.1 **Compliance with Environmental Laws**

7.1.1 Kelowna will not carry out any operations or activities, or construct any Works, that in the reasonable opinion of OKIB materially increase the risk of liability to OKIB (whether directly or indirectly) as a result of the application of Environmental Laws.

7.2 Environmental Matters

7.2.1 Kelowna will provide OKIB with certification from the City of Kelowna Engineer of the implementation, within the timelines specified in such determination, of all mitigation measures, including monitoring and compliance, required under such determination.

7.3 Environmental Site Assessment

- 7.3.1 Tetra Tech Canada Inc., a qualified independent consultant undertook an environmental site assessment of the environmental condition of the Permit Area and prepared a Human Health and Ecological Risk Assessment: CN Railway Right-of-Way Mile 105.9 to 106.6 and Mile 107.0 to 107.5 Duck Lake Indian Reserve 7, a copy of which is attached as Schedule C.
- 7.3.2 Within one hundred and twenty (120) days after the termination of this Permit, Kelowna will have a qualified independent consultant undertake an environmental site assessment of the environmental condition of the Permit Area at that time and will provide OKIB with a report on such condition. The report will state that it may be relied upon by all Parties and Kelowna agrees that all Parties may rely upon it.
- 7.3.3 The environmental site assessment reports referred to in subsections 7.3.1 and 7.3.2 will be *prima facie* evidence of the environmental condition of the Permit Area immediately prior to the Commencement Date and immediately prior to the expiration of this Permit or immediately after the earlier termination of this Permit, as the case may be.
- 7.3.4 Prior to the end of the Term, or within sixty (60) days after the issuance of the report referred to in subsection 7.3.2 if this Permit ends early, Kelowna will remediate any Contamination of the Permit Area arising from Kelowna's (or any Person on the Permit Area because of Kelowna's rights under this Permit) use of the Permit Area to the environmental condition of the Permit Area identified in the report referred to in subsection 7.3.1 or to such other environmental condition as may be acceptable to OKIB.

7.4 **Contaminants and Releases**

- 7.4.1 Prior to the end of the Term or within ninety (90) days after the earlier termination of this Permit, Kelowna will remove from the Permit Area any Contaminants that are, or have been, located, stored or incorporated on the Permit Area by Kelowna or any Person on the Permit Area because of Kelowna's rights under this Permit and, upon removal, will promptly provide OKIB with documentation satisfactory to each of them, confirming the completion of the removal satisfactory to each of them and any Authority.
- 7.4.2 Upon the Release of any Contaminants by Kelowna or any Person on the Permit Area because of Kelowna's rights under this Permit, Kelowna will:
 - 7.4.2.1 immediately deliver notice to OKIB and any appropriate Authority of the occurrence of the Release;
 - 7.4.2.2 ensure that any notice includes details relating to the Release, including the time and extent of the Release, the estimated amount of such

Contaminants, the remedial action taken prior to the delivery of the notice, and the remedial action that Kelowna intends to take in order to contain or rectify the Release;

- 7.4.2.3 immediately remove from the Permit Area such Contaminants, and take all remedial action necessary to fully rectify the effects of the Release, in compliance with all reasonable requests by OKIB and all applicable Environmental Laws;
- 7.4.2.4 provide OKIB with an environmental site assessment report, satisfactory to OKIB, prepared by a qualified independent consultant, specifying Kelowna's activities under paragraph 7.4.2.3 and the state of the Permit Area after the completion of such activities as compared to the state of the Permit Area prior to the Release, and stating that such report may be relied upon by all Parties, and Kelowna agrees that OKIB may rely on such report;
- 7.4.2.5 undertake such further activities as may reasonably require to remove such Contaminants and rectify the Release, based on the report referred to in this section; and
- 7.4.2.6 the Release of Contaminants in this section does not contemplate materials used for the regular operations and maintenance of the Okanagan Rail Trail for the permitted uses such as de-icing salt and sand for grit.
- 7.5 **Representation and Warranty** Kelowna represents and warrants to OKIB that Kelowna's use of the Permit Area will not involve the Release of any Contaminants.
- 7.6 **Survival of Article** This Article survives when this Permit ends.

8. DEFAULTS, EARLY TERMINATION AND END OF PERMIT

8.1 **Defaults on Obligations Owed to OKIB**

- 8.1.1 If Kelowna defaults on any obligation owed to OKIB under this Permit, then OKIB may deliver to Kelowna a default notice.
- 8.1.2 Kelowna will cure the default identified in a default notice within fifteen (15) days of delivery for a default of an outstanding payment under section 4.3 of this Permit. If Kelowna does not cure that default within fifteen (15) days, then OKIB may declare the Term ended by delivering a termination notice to Kelowna, with a copy to OKIB.
- 8.1.3 Kelowna will cure the default identified in a default notice within thirty (30) days of delivery for a default of any obligation other than an outstanding payment obligation. If such default:
 - 8.1.3.1 can reasonably be cured within thirty (30) days after the default notice is delivered and Kelowna fails to cure such default within the thirty (30) days; or
 - 8.1.3.2 cannot reasonably be cured within thirty (30) days after the default notice is delivered and Kelowna does not begin to cure such default within the thirty (30) days to the reasonable satisfaction of OKIB or continue to cure such default with due diligence after beginning to cure,

then OKIB may sue Kelowna for damages.

- 8.1.4 If a default is not cured within the time provided for under this Permit, then OKIB may cure that default in OKIB's sole discretion. Any of OKIB's expenses will be payable by Kelowna within thirty (30) days of delivery of notice from OKIB.
- 8.1.5 If OKIB begins to cure a default, then OKIB will have no obligation to continue to cure such default to completion and OKIB is not liable for any losses or expenses suffered by Kelowna, or any Person on the Permit Area due to the rights of Kelowna under this Permit, arising due to OKIB's actions under this section.
- 8.2 **Surrender of the Permit** When this Permit ends, Kelowna will peaceably surrender and yield up use and occupation of the Permit Area to OKIB, in the condition required by the terms of this Permit and all Works will be the property of OKIB absolutely, free of all encumbrances and for no compensation.
- 8.3 **Permit Area No Longer Required –** If Kelowna determines that it no longer requires the Permit Area for any of the Authorized Uses, then Kelowna will give OKIB reasonable notice that this Permit will end on a date specified in the notice.
- 8.4 **Challenge by OKIB –** If OKIB determines that, in its view, the Permit Area is no longer required by Kelowna for any of the Authorized Uses, it may request that Kelowna give the notice required under section 8.3. If Kelowna declines to give the notice, or disputes that it is required, then the dispute may be submitted by any Party to the applicable dispute resolution process in Article 11.

9. INDEMNITY

- 9.1 Kelowna's Indemnity of OKIB Kelowna will be liable for all loss, costs, damages, and expenses whatsoever incurred or suffered by OKIB and OKIB's elected officials, servants, employees and other legal representatives (the Additional Indemnities) including but not limited to damage to or loss of property and loss of use thereof, and injury to or death of a person or persons resulting from or in connection with a default of any of Kelowna's obligations under this Permit or the exercise by Kelowna of its rights or the performance, purported performance, or non-performance of activities under this Permit carried out or permitted by Kelowna, its workers, employees, agents, contractors subcontractors or invitees, excepting only where such loss, costs, damages and expenses are as a result of the negligence or Willful Misconduct of OKIB or the Additional Indemnities, in the course of carrying out their duties.
- 9.2 Kelowna will defend, indemnify and hold harmless OKIB and the Additional Indemnities from and against all claims, demands, actions, proceedings, and liabilities whatsoever and all costs and expenses incurred in connection with or resulting from a default of Kelowna's obligations under this Permit or the exercise by Kelowna of its rights or the performance, purported performance, or non-performance of activities under this Permit carried out or permitted by Kelowna, its workers, employees, agents, contractors subcontractors or invitees excepting only where such claim, demand, action, proceeding or liability is based on the negligence or Wilful Misconduct of OKIB or the Additional Indemnities, in the course of carrying out their duties.
- 9.3 **Survival of Article** This Article survives when this Permit ends.

10. DELIVERY

10.1 **General Requirement** – All notices, requests, and demands under this Permit, which will be in writing, and all amount payable to OKIB will be paid, and will be delivered in accordance with this Article to the following addresses:

To OKIB:

Okanagan Indian Band 12420 Westside Road, Vernon, BC V1H 2A4 Fax: (250) 542-4990

Attention: Chief

To Kelowna:

City of Kelowna 1435 Water Street, Kelowna, BC V1Y 1J4 Fax: (250) 862-3399

Attention: City Clerk

- 10.2 **Date of Delivery** If any question arises as to the date on which payment, notice, request or demand was made, it will be deemed to have been delivered:
 - 10.2.1 if sent by fax, the day of transmission if transmitted before 3:00 p.m., otherwise, the next day;
 - 10.2.2 if sent by mail, on the sixth day after the notice was mailed; or
 - 10.2.3 if sent by any means other than fax or mail, the day it was received.

If the postal service is interrupted or threatened to be interrupted, then any payment, notice, request or demand will only be sent by means other than mail.

10.3 **Change of Contact Information** – Any Party may change its contact information shown in this Permit by informing the other Parties of the new contact information, and the change will take effect thirty (30) days after the notice is delivered.

11. DISPUTE RESOLUTION

11.1 Disputes

- 11.1.1 Any dispute arising from or under this Permit between OKIB and Kelowna will be resolved as follows:
 - 11.1.1.1 <u>Negotiation</u>: The Party who wishes a dispute to be resolved will deliver a dispute notice to the other Party. Each Party will promptly designate a senior representative who will attempt in good faith to resolve the dispute by negotiation.
 - 11.1.1.2 <u>Mediation</u>: If negotiation does not resolve the dispute within fifteen (15) days of delivery of the dispute notice, then either Party may deliver a

mediation notice to the other Party. The Parties will then promptly appoint a qualified, impartial and experienced mediator, the cost of which will be paid equally by both Parties. If the Parties cannot agree on a mediator within fifteen (15) days of delivery of the mediation notice, then the mediator will be appointed by the British Columbia International Commercial Arbitration Centre (or its successor, or a similar body if neither is available). Within ten (10) days of appointment of a mediator, each Party will provide the mediator and each other with a written statement of its position about the dispute and summary of the arguments supporting its position. The mediator will meet with the Parties in his or her sole discretion in an attempt to resolve the dispute. The Parties will provide any additional information requested by the mediator. The mediator may hire experts, the cost of which will be paid equally by the Parties unless the mediator orders a different division.

11.1.1.3 <u>Arbitration</u>: If the dispute is not resolved within thirty (30) days of the appointment of a mediator, then, on application by any Party, the dispute may be referred to a single arbitrator under the *Arbitration Act*, RSBC 1996, c 55. The decision of the arbitrator is final and binding on the Parties. The cost of the arbitrator will be paid equally by the Parties unless the arbitrator orders a different division.

12. MISCELLANEOUS

- 12.1 **All Terms are Covenants** All agreements, terms, conditions, covenants, provisions, duties and obligations to be performed or observed under this Permit are deemed to be conditions as well as covenants.
- 12.2 **No Presumption** There will be no presumption that any ambiguity in any of the terms of this Permit will be interpreted in favour of any Party.
- 12.3 **No Cost to OKIB** Except as otherwise explicitly set out in this Permit, OKIB will not be responsible during the Term for any costs, charges or expenses arising from or relating to Kelowna's use or occupancy of the Permit Area or any of Kelowna's obligations under this Permit.
- 12.4 **Binding on Successors** This Permit will be for the benefit of and be binding upon each Party's respective heirs, successors, executors, administrators, assigns and other legal representatives.
- 12.5 **Remedies are Cumulative** Notwithstanding any part of this Permit that provides a remedy other than cancellation by OKIB or suing for damages by OKIB, all remedies under this Permit or at law may be exercised at the same time and the exercise of one remedy does not preclude the exercise of any other remedy.
- 12.6 **No Waiver** No condoning, excusing or overlooking of any default of this Permit will operate as a waiver by, or otherwise affect the respective rights of, the other Parties in respect of any continuing or subsequent default. No waiver of these rights will be inferred from anything done or omitted to be done by any Party, except by an express waiver in writing.
- 12.7 **No Assumption of Responsibility** No consent or absence of consent by OKIB will in any way be an assumption of responsibility or liability by such Party for any matter subject to or requiring such Party's consent.

- 12.8 **Not a Joint Venture** Nothing in this Permit will be construed as creating a relationship of agency, partnership, joint venture or other such association between any of the Parties.
- 12.9 Kelowna Authority Kelowna represents and warrants that:
 - 12.9.1 it has the authority under the *Local Government Act* and/or the *Community Charter* of British Columbia to enter into this Permit and to perform all of the obligations, covenants and agreements contained in this Permit; and
 - 12.9.2 Kelowna Council has consented to the issuance of this Permit, and authorized its signatories to execute this Permit on behalf of Kelowna.
- 12.10 **Counterpart Execution** This Permit may be executed in one or more counterparts, each of which is considered to be an original but all of which together constitute one and the same document. Each Party will promptly deliver its originally executed Permit to the other Parties.

The Parties have executed this Permit on the dates indicated below.

On behalf of the OKANAGAN INDIAN BAND dated _____, 2023

Chief – Byron Louis

Witness

On behalf of the CITY OF KELOWNA dated _____, 2023

Mayor Thomas Dyas

City Clerk – Stephen Fleming

SCHEDULE "A" – Band and Council Resolution

WHEREAS:

- A. Okanagan Indian Band has negotiated a Permit to be entered into between Okanagan Indian Band and City of Kelowna, to which this resolution is to be attached as a Schedule; and
- B. The terms used in this resolution that are defined in the Permit have the same meaning as in the Permit.

BE IT RESOLVED that the Council, on behalf of Okanagan Indian Band:

- A. has read and understood the Permit terms;
- B. consents to the execution of the Permit on its terms; and
- C. authorizes any two members of the Council to execute the Permit on behalf of OKIB.

DATED _____, 20___.

Quorum for the Council is _____ members.

Chief

Councillor

Councillor

Councillor

Councillor

SCHEDULE "B" – Works Area

[See map attached next page]

SCHEDULE "C" – Environmental Site Assessment

[See Tetra Tech's Report titled "Human Health and Ecological Risk Assessment CN Railway Right-of-Way Mile 105.9 to 106.6 and Mile 107.0 to 107.5 Duck Lake Indian Reserve 7" on next page]

Human Health and Ecological Risk Assessment CN Railway Right-of-Way Mile 105.9 to 106.6 and Mile 107.0 to 107.5 Duck Lake Indian Reserve 7

PRESENTED TO OKANAGAN INDIAN BAND INDIGENOUS AND NORTHERN AFFAIRS CANADA CANADIAN NATIONAL RAILWAY

OCTOBER 2018 ISSUED FOR REVIEW FILE: 704-ENW.VENW03093-02

This "Issued for Review" document is provided solely for the purpose of client review and presents our interim findings and recommendations to date. Our usable findings and recommendations are provided only through an "Issued for Use" document, which will be issued subsequent to this review. Final design should not be undertaken based on the interim recommendations made herein. Once our report is issued for use, the "Issued for Review" document should be either returned to Tetra Tech Canada Inc. (Tetra Tech) or destroyed.

Tetra Tech Canada Inc. 150, 1715 Dickson Avenue Kelowna, BC V1Y 9G6 CANADA Tel 250.862.4832 Fax 250.862.2941 274 This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech Canada Inc. (Tetra Tech) was retained by the Okanagan Indian Band (OKIB), Indigenous and Northern Affairs Canada (INAC) and Canadian National Railway (CN) to conduct a Human Health and Ecological Risk Assessment of the CN rail line right-of-way (RoW) that lies within the boundaries of the Duck Lake Indian Reserve (IR) 7 located near the northern limits of Kelowna, BC (the Site). This Human Health and Ecological Risk Assessment follows a Phase II Environmental Site Assessment (ESA) and a Phase III ESA completed for the Site by Tetra Tech in 2016 and 2017. In addition, groundwater data collected from groundwater monitoring wells installed in 2018 are included in the risk assessment.

The risk assessment addresses the polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons and copper identified by the Phase II and Phase III ESAs to be exceeding environmental quality guidelines and standards for the Site. The risk assessment considered the potential future uses of the Site as a recreational trail or industrial use.

Based on the results of the risk assessment the following conclusions were made.

Overall Human Health Conclusions and Recommendations

The contaminants of potential concern listed above were tentatively identified by screening against Canadian Council of Ministers of Environment (CCME) guidelines and BC Contaminated Sites Regulation (CSR) standards for residential, parkland, and commercial land uses. It is noted that for the contaminants of potential concern, the commercial guidelines and standards are equivalent to industrial guidelines and standards. The comparison eliminated all chemicals as being human health concerns, but the PAHs were further evaluated for their of total potency equivalents (TPE, a measure of risk posed by direct human contact) and potential to migrate to groundwater (Index of Additive Cancer Risk, IACR, a measure of risk posed to drinking water). The calculated upper 95th percent confidence limit of the mean (95UCL) concentrations for benzo(b)fluoranthene, benzo(a)pyrene, benzo(k)fluoranthene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d) were used to determine the TPE. The IACR value was calculated using the same PAHs, as well as chrysene, dibenzo(a,h)anthracene, and benzo(a)anthracene.

The TPE totaled 0.042, well below the screening level of 5.3. Even if multiplied by 3 to account for the source of the PAHs (creosote) per CCME 2010 recommendations, the TPE is well below 5.3. Therefore, there is little potential for human health impacts from daily, long-term Site exposure. In addition, the IACR was calculated using the 95UCL concentrations of all PAHs, and it totalled 3.55. This is in excess of the guideline value of 1.0. The IACR value is used to indicate whether a potential for leaching to groundwater is present. Evaluation of the calculation shows that, in this case, benzo(b)fluoranthene is the COPC causing the exceedance of 1.0. However, groundwater samples collected from around the Site were non-detect for benzo(b)fluoranthene and the other PAHs, providing evidence that PAHs are not leaching to groundwater at levels of concern.

Given the site-specific determination that leaching to groundwater is not occurring, and that there are no risks to humans from direct contact with the soils, no further analysis is recommended, and no soil removal or remediation action is needed based on human health concerns.

Overall Ecological Conclusions and Recommendations

Results of this screening analysis indicate that the maximum concentrations in soil of some PAHs and copper exceed CCME guidelines and CSR standards for ecological receptors. Therefore, copper, as well as benzo(b)fluoranthene, benzo(a)pyrene, benzo(k)fluoranthene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d) were further evaluated for ecological risk.

As with the human-health risk assessment, the 95UCL concentrations of these contaminants of potential concern were calculated and compared to guideline and standard values to determine if exceedances still existed. In all cases, the 95UCL concentrations were below the lowest guideline value for the protection of ecological receptors. There is no indication that the Site poses a hazard to ecological receptors.

In addition, it is unlikely that the limited areas of impacted soil would constitute a desirable habitat area for ecological receptors as they are located within purposely compacted soils that were intended to be free of vegetation for the safe operation of the former rail line. As well, they are unlikely to be contacted on an extensive basis by ecological receptors as past use did not encourage wildlife to the RoW. Most of the RoW is located at a distance greater than 10 m from a surface water body, and sampling data have demonstrated a lack of migration of all contaminants of potential concern from the surface to subsurface.

The relatively small areas of impact, difficult growing conditions, and low habitat quality due to compacted, shallow soil make it unlikely that the copper and PAHs will have a population-level effect on plants or invertebrates. The lack of plants providing a food source to mammals would also decrease the potential for foraging by herbivores. Further, the potential future use as a recreational trail calls for regrading and replacement of surface soil, diluting any exposure concentrations, as well as providing cover to deeper soil. By limiting the potential for contact, the exposure is no longer complete and there would be no associated risk.

In conclusion, the Site has been evaluated for human health risks and found to have little potential to adversely impact humans under residential, industrial, or recreational visitor scenarios. In addition, the Site has been evaluated for ecological risks and found to present little potential for adverse impacts to terrestrial or aquatic receptors. These conclusions are based on current site conditions as determined through soil and groundwater sampling, and are appropriate to potential future site use as a recreational trail, residential land use or industrial land use.

TABLE OF CONTENTS

1.0 INTRODUCTION. 2.0 BACKGROUND INFORMATION 2.1 Site Description 2.2 Previous Environmental Investigations 2.3 Groundwater Quality Investigation 2.4 Scope of the Risk Assessment 3.0 REGULATORY GUIDELINES AND STANDARDS 3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 3.1 Soil Quality Guidelines and Standards 4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN. 4.1 Contaminants of Potential Concern - Soil 4.2 Contaminants of Potential Concern - Groundwater 4.3 Other Environmental Media 5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 5.2 Exposure Pathway Identification for Human Health 1 5.5.1 5.5.1 Exposure Point Concentrations 1 5.5.2 5.6 Hazard Assessment 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 5.7.1 Benzo(a)pyrene Risk Characte	EXE	CUTI	/E SUN	MMARY	I			
2.0 BACKGROUND INFORMATION 2.1 Site Description 2.2 Previous Environmental Investigations 2.3 Groundwater Quality Investigation 2.4 Scope of the Risk Assessment 3.0 REGULATORY GUIDELINES AND STANDARDS 3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN 4.1 Contaminants of Potential Concern – Soil 4.2 Contaminants of Potential Concern – Groundwater 1.3 Other Environmental Media 5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Pathway Identification for Human Health 1 5.5.1 Exposure Model 1 5.5.2 Exposure Point Concentrations 1 5.5.1 Exposure Point Concentrations 1 5.7.1 Risk Characterization <t< th=""><th>1.0</th><th>INTF</th><th>RODUC</th><th>CTION</th><th> 1</th></t<>	1.0	INTF	RODUC	CTION	1			
2.1 Site Description	2.0	BACKGROUND INFORMATION						
2.2 Previous Environmental Investigation 2.3 Groundwater Quality Investigation 2.4 Scope of the Risk Assessment 3.0 REGULATORY GUIDELINES AND STANDARDS 3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.1 Contaminants of Potential Concern - Soil 4.2 Contaminants of Potential Concern - Soil 4.3 Other Environmental Media 5.1 Problem Formulation 5.1 Problem Formulation 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 5.3 Results of the Problem Formulation 5.4 Conceptual Exposure Model 5.5 Exposure Parameters 5.6 Hazard Assessment 5.7.1 Exposure Parameters		2.1 Site Description						
2.3 Groundwater Quality Investigation 2.4 Scope of the Risk Assessment 3.0 REGULATORY GUIDELINES AND STANDARDS 3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.1 Contaminants of Potential Concern – Soil 4.2 Contaminants of Potential Concern – Groundwater 4.3 Other Environmental Media 5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 5.4 Conceptual Exposure Model 1 5.5 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 <th></th> <th>2.2</th> <th>Previo</th> <th>bus Environmental Investigations</th> <th>1</th>		2.2	Previo	bus Environmental Investigations	1			
2.4 Scope of the Risk Assessment 3.0 REGULATORY GUIDELINES AND STANDARDS 3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.1 Contaminants of Potential Concern – Soil 4.1 Contaminants of Potential Concern – Groundwater 4.3 Other Environmental Media 5.0 HUMAN HEALTH RISK ASSESSMENT 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 5.3 Results of the Problem Formulation 5.4 Conceptual Exposure Model 5.5 Exposure Pathway Identification for Human Health 5.4 Conceptual Exposure Model 5.5 Exposure Parameters 5.6 Hazard Assessment 5.7 Risk Characterization 5.7.1 Benzo(a)pyrene Risk Characterization 5.7.2 IACR Calculation and Risk Characterization 5.7.3 Risk Estimate Results 6.1 Problem Formulation 6.2 Ecological Receptors 6.3 Exposure Pathway Identification for Ec		2.3	Groun	dwater Quality Investigation	2			
3.0 REGULATORY GUIDELINES AND STANDARDS. 3.1 Soil Quality Guidelines and Standards. 3.2 Water Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN. 4.1 Contaminants of Potential Concern - Soil. 4.2 Contaminants of Potential Concern - Groundwater 4.3 Other Environmental Media. 5.0 HUMAN HEALTH RISK ASSESSMENT. 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 5.3 Results of the Problem Formulation 5.4 Conceptual Exposure Model 5.5 Exposure Pathway Identification for Human Health 5.5 Exposure Pathway Identifications 5.5 Exposure Pathway Identification 5.5 Exposure Pathway Identification 5.5 Tisposure Pathway Identification 5.6 Hazard Assessment 5.7 Risk Characterization 5.7 Risk Characterization 5.7.1 Benzo(a)pyrene Risk Characterization 5.7.2 IACR Calculation and Risk Characterization <t< td=""><td></td><td>2.4</td><td>Scope</td><td>e of the Risk Assessment</td><td>3</td></t<>		2.4	Scope	e of the Risk Assessment	3			
3.1 Soil Quality Guidelines and Standards 3.2 Water Quality Guidelines and Standards 4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN. 4.1 Contaminants of Potential Concern - Soil. 4.2 Contaminants of Potential Concern - Groundwater. 4.3 Other Environmental Media 5.0 HUMAN HEALTH RISK ASSESSMENT. 5.1 Problem Formulation 5.2 Exposure Pathway Identification for Human Health 5.3 Results of the Problem Formulation 5.4 Conceptual Exposure Model. 5.5 Exposure Parameters 5.6 Hazard Assessment 5.6 Hazard Assessment 5.7 Risk Characterization 5.7.1 Benzo(a)pyrene Risk Characterization 5.7.2 IACR Calculation and Risk Characterization 5.7.3 Risk Estimate Results 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 6.1 Problem Formulation 6.2 Exposure Pathway Identification for Ecological Risk 6.3.1 Soil 6.3.2 Supresent Concern 2.4 Se	3.0	REG	ULAT	ORY GUIDELINES AND STANDARDS	4			
3.2 Water Quality Guidelines and Standards 4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN		3.1	Soil Q	uality Guidelines and Standards	4			
4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN. 4.1 Contaminants of Potential Concern - Soil. 4.2 Contaminants of Potential Concern - Groundwater. 1 4.3 Other Environmental Media 1 5.0 HUMAN HEALTH RISK ASSESSMENT. 1 5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Point Concentrations 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.5 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Exposure Pathway Identification for Ecological Risk 2		3.2	Water	Quality Guidelines and Standards	5			
4.1 Contaminants of Potential Concern - Soil. 4.2 Contaminants of Potential Concern - Groundwater. 1 4.3 Other Environmental Media 1 5.0 HUMAN HEALTH RISK ASSESSMENT. 1 5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model. 1 5.5 Exposure Point Concentrations 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 2 6.2.2 Species of Concern 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.3.1 S	4.0	IDEN	NTIFIC	ATION OF CONTAMINANTS OF POTENTIAL CONCERN	6			
4.2 Contaminants of Potential Concern - Groundwater 1 4.3 Other Environmental Media 1 5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Point Concentrations 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2		4.1	Conta	minants of Potential Concern – Soil	6			
4.3 Other Environmental Media 1 5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Parameters 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 General Ecozone Evaluation 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment <td< td=""><td></td><td>4.2</td><td>Conta</td><td>minants of Potential Concern - Groundwater</td><td>10</td></td<>		4.2	Conta	minants of Potential Concern - Groundwater	10			
5.0 HUMAN HEALTH RISK ASSESSMENT 1 5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2 </td <td></td> <td>4.3</td> <td>Other</td> <td>Environmental Media</td> <td>11</td>		4.3	Other	Environmental Media	11			
5.1 Problem Formulation 1 5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model	5.0	HUN	HUMAN HEALTH RISK ASSESSMENT					
5.2 Exposure Pathway Identification for Human Health 1 5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.1	Proble	em Formulation	12			
5.3 Results of the Problem Formulation 1 5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3.1 Soil 2 6.3.1 Soil 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.4 Hazard Assessment 2 6.5 Hazard Assessment		5.2	Expos	sure Pathway Identification for Human Health	12			
5.4 Conceptual Exposure Model 1 5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.3	5.3 Results of the Problem Formulation		15			
5.5 Exposure Assessment 1 5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.4 Conceptual Exposure Model		15				
5.5.1 Exposure Point Concentrations 1 5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.5	Expos	sure Assessment	15			
5.5.2 Exposure Parameters 1 5.6 Hazard Assessment 1 5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3.1 General Ecozone Evaluation 2 6.3.2 Species of Concern 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			5.5.1	Exposure Point Concentrations	15			
5.6 Hazard Assessment			5.5.2	Exposure Parameters	17			
5.7 Risk Characterization 1 5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.6	Hazar	d Assessment	17			
5.7.1 Benzo(a)pyrene Risk Characterization 1 5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		5.7	18					
5.7.2 IACR Calculation and Risk Characterization 1 5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			5.7.1	Benzo(a)pyrene Risk Characterization	18			
5.7.3 Risk Estimate Results 1 6.0 ECOLOGICAL RISK ASSESSMENT 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			5.7.2	IACR Calculation and Risk Characterization	18			
6.0 ECOLOGICAL RISK ASSESSMENT. 1 6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			5.7.3	Risk Estimate Results	18			
6.1 Problem Formulation 1 6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2	6.0	ECO		CAL RISK ASSESSMENT	19			
6.2 Ecological Receptors 1 6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		6.1	Proble	em Formulation	19			
6.2.1 General Ecozone Evaluation 2 6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3 Soil 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		6.2	Ecolog	gical Receptors	19			
6.2.2 Species of Concern 2 6.3 Exposure Pathway Identification for Ecological Risk 2 6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			6.2.1	General Ecozone Evaluation	20			
 6.3 Exposure Pathway Identification for Ecological Risk			6.2.2	Species of Concern	21			
6.3.1 Soil 2 6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2		6.3	Expos	sure Pathway Identification for Ecological Risk	21			
6.3.2 Surface Water/Groundwater 2 6.4 Conceptual Exposure Model 2 6.5 Exposure Assessment 2 6.6 Hazard Assessment 2			6.3.1	Soil	22			
6.4 Conceptual Exposure Model			6.3.2	Surface Water/Groundwater				
6.5 Exposure Assessment		6.4	Conce	eptual Exposure Model	23			
6.6 Hazard Assessment		6.5	5 Exposure Assessment					
		6.6	Hazar	d Assessment	24			

	6.7 6.8	Ecological Risk Characterization 6.7.1 Hazard Quotient Assessment Risk Characterization	25 25 26
7.0	CON	CLUSIONS	26
8.0	CLO	SURE	27
REFE		CES	28

LIST OF TABLES IN TEXT

Table 4-1 COPC Selection for Metals in Soil	6
Table 4-2. COPC Selection for PHCs and PAHs in Soil	7
Table 5-1. Potential Receptors	12
Table 5-2: Summary of COPCs	15
Table 5-3: B(a)P TPE Assessment for Exposure Point Concentrations for Human Health COPCs	16
Table 5-4: IACR Assessment for Exposure Point Concentrations for Human Health COPCs	16
Table 5-5: Exposure Parameters Appropriate to Site Exposures	17
Table 6- 1: Summary of COPCs	23
Table 6-2: Exposure Point Concentrations for Soil COPCs	24
Table 6-3. Comparison of Exposure Point Concentration to Ecological Screening Levels	25

APPENDIX SECTIONS

APPENDICES

- Appendix A Phase II ESA and Phase III ESA Data
- Appendix B Groundwater Quality Investigation
- Appendix C Proposed Recreational Trail
- Appendix D ProUCL Output
- Appendix E Toxicity Assessment
- Appendix F Limitations on the Use of This Document

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Okanagan Indian Band, Indigenous and Northern Affairs Canada and Canadian National Railway and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Okanagan Indian Band, Indigenous and Northern Affairs Canada and Canadian National Railway, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

v

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by the Okanagan Indian Band (OKIB), Indigenous and Northern Affairs Canada (INAC) and Canadian National Railway (CN) to conduct a Human Health and Ecological Risk Assessment of the CN rail line right-of-way (RoW) that lies within the boundaries of the Duck Lake Indian Reserve (IR) 7 located near the northern limits of Kelowna, BC; specifically, CN Mile 105.9 to 106.6 and Mile 107.0 to 107.5. The subject lands are herein collectively referred to as the "Site" and a Site Location Plan is attached as Figure 1. This Human Health and Ecological Risk Assessment follows a Phase II Environmental Site Assessment (ESA) and a Phase III ESA completed for the Site by Tetra Tech in 2016 and 2017. Tetra Tech understands that these assessments were commissioned to determine the environmental condition of the Site prior to the land being transferred to the Federal Crown.

The methodology used is consistent with Canadian Council of Ministers of the Environment (CCME) guidance, Federal Contaminated Sites Action Plan (FCSAP) guidance and guidance from the government of British Columbia, and represents a conservative estimate of risks associated with potential exposures.

2.0 BACKGROUND INFORMATION

2.1 Site Description

The rails have been removed and the ties lifted from the RoW. The rail bed remains gravel surfaced and the areas along each side of the rail bed are sparsely vegetated.

A site plan is provided as Figure 2. The global positions of the approximate centres of the two sections of the Site are:

- Mile 105.9 to 106.6
 - Latitude: 50° 0'49.52"N
 - Longitude: 119°23'46.12"W
- Mile 107.0 to 107.5
 - Latitude: 50° 0'8.43"N
 - Longitude: 119°23'15.62"W

Duck Lake IR 7 is located on each side of both sections of the RoW. The RoW bisects the Reserve from the approximate centre of the northern portion to the southeast corner of the northern portion; and runs along the east side of Ellison Lake (locally known as Duck Lake) in the southern portion. The northern portion of the Reserve is generally flat, and is surrounded by residential land along the west of the railway, and residential and light industrial land along the east. The southern portion of the Reserve contains a hilly, vacant area east of the RoW, and residential land and Duck Lake west of the RoW.

2.2 **Previous Environmental Investigations**

Detailed reports of previous environmental investigations can be found in the Phase II ESA (Tetra Tech 2016) and Phase III ESA (Tetra Tech, 2017). Tables containing all soil sampling results from the 2016 and 2017 field activity and figures showing sampling locations can be found in Appendix A. Soil sample location plans are also provided in Appendix A.

The Phase II ESA found that concentrations of the following substances exceeded the Canadian Council of Ministers Environment (CCME) residential land (RL), park land (PL), and commercial land (CL) guidelines in surface soil samples collected along former rail bed within the Site:

Substance	CCME Guideline Exceeded
Copper	CCME RL/PL and CL Guidelines
Naphthalene	CCME RL/PL and CL Guidelines
Phenanthrene	CCME RL/PL and CL Guidelines
Benzo(b)fluoranthene	CCME RL/PL Guideline
Benzo(k)fluoranthene	CCME RL/PL Guideline
Indeno(1,2,3-c,d)pyrene	CCME RL/PL Guideline
Benzo(a)pyrene Total Potency Equivalent	CCME RL/PL and CL Guidelines
Index of Additive Cancer Risk (IACR)	CCME RL/PL and CL Guidelines
Petroleum Hydrocarbon Fraction F3 (PHC F3)	CCME RL/PL Guideline

Evaluating the Phase II ESA results against the British Columbia Contaminated Sites Regulation (CSR 2017) standards, found that only copper, benzo(b)fluoranthene, and indeno(1,2,3-c, d)pyrene exceeded the CSR RL/PL standards at a few surface soil sample locations only. No substance concentrations exceeded the CSR CL standards.

Step-out soil sampling and analysis conducted during the Phase III ESA confirmed that the extent of copper and polycyclic aromatic hydrocarbon (PAH) impacted soil was restricted to the area of rail bed and embankments and within a depth of 0.4m below grade. Copper and PAH concentrations were less than the CCME RL/PL and CL guidelines and CSR RL standards in all soil samples collected beyond the rail bed and embankments but still within the RoW. Tetra Tech concludes that the contaminants of concern have not migrated laterally or vertically from the former location of the rail bed.

2.3 Groundwater Quality Investigation

Prior to completing this Risk Assessment, Tetra Tech monitored the installation of four groundwater monitoring wells (18MW01 to 18MW04) with the Site in March 2018. Groundwater monitoring well locations are shown on Figure B-1. Drilling and well installation methodologies and borehole logs are provided in Appendix C.

Depth to groundwater measurements collected on April 12 and June 6, 2018, found groundwater at depths ranging from approximately 7.5 m to 9.2 m below grade at 18MW01, 18MW02, and 18MW04. At 18MW03, the depth to groundwater below grade was 1.28 m in April and 1.69 m in June. The groundwater elevation at this location is likely influenced by a creek that passes through this area before discharging to Duck Lake. Flooding has reportedly occurred at this location in the past. Depth to groundwater measurements collected by Tetra Tech are summarized in Table B-1.

BC MoE Observation Well No. 356 is believed to be located on the Property based on the Provincial Groundwater Observation Well Network mapping. Water level measurements collected from Observation Well No. 356 between 2005 and 2015 indicated the groundwater table typically fluctuated less than 1 m over this period. The groundwater level data chart for this observation well is attached in Appendix B. Tetra Tech concludes there are not significant seasonal fluctuations in the groundwater level beneath the Site.

Groundwater samples were collected from 18MW01 to 18MW04 in April and June 2018, and analyzed for dissolved copper and PAHs. The groundwater sampling methodology is provided in Appendix C. The analytical results are summarized in Tables C-2 and C-3 with comparison to the Federal Interim Groundwater Quality Guidelines (FIGQG)

for Residential/Parkland Land Use (2016) for the protection of aquatic life, Guidelines for Canadian Drinking Water Quality (2017) and the BC CSR Generic Numerical Water Standards for the protection of aquatic life and drinking water. Groundwater quality within 10 m of surface water body is to be compared with the CCME Canadian Water Quality Guidelines (CWQG). For the contaminants of potential environmental concern at this Site, the CWQG are the same as the FIGQG.

PAH concentrations in the collected groundwater samples were less than the FIGQG for aquatic life, Health Canada drinking water guidelines and CSR aquatic life standards referenced in these documents. However, the concentration of PAH parameter dibenz(a,h)anthracene (0.017 μ g/L did exceed the CSR drinking water standard of 0.01 μ g/L in the duplicate groundwater sample from 18MW01 in June. The dibenz(a,h)anthracene concentration in the original June sample from 18MW01 and in all other original and duplicate samples collected in April and June were less than the CSR drinking water standard. Dibenz(a,h)anthracene was not identified as a contaminant of concern in soil samples collected from the Site. Tetra Tech concludes that dibenz(a,h)anthracene is not a contaminant of concern in groundwater beneath the Site.

Dissolved copper concentrations were less than the Health Canada drinking water guideline in all collected groundwater samples and less than the FIGWQ guidelines for protection of freshwater aquatic life in seven of the eight samples collected. While the April groundwater sample collected from monitoring well 18MW01 had a copper concentration less than the FIGQG for aquatic life, the June sample copper concentration exceeded. This single result is not suspected to be attributable to historical railway activities based on the other seven groundwater analytical results and non-detectable copper leachate concentrations obtained from leachate analyses conducted on copper impacted soil during the Phase III ESA. Further, it is noted that monitoring well 18MW01 is located more than 500 m away from Duck Lake and groundwater quality at this location is unlikely to adversely impact aquatic receptors in Duck Lake. In accordance with the Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites the protection of freshwater aquatic life can be excluded from consideration if dissolved phase contaminants are beyond 500 m of a downgradient surface water body.

Groundwater quality data collected by BC MoE from Observation Well No. 356 in 2014 and 2016 also showed dissolved copper concentrations less than the aquatic life and drinking water guidelines and standards and similar to those measured by Tetra Tech.

2.4 Scope of the Risk Assessment

The risk assessment presented for this Site consists of a problem formulation, screening of contaminants of potential concern (COPCs) against residential/parkland and commercial guidelines and standards, and quantitative risk assessment of COPCs retained after screening. The risk assessment was completed to assess the risks to human health and ecological receptors associated with the Site using the 2016 and 2017 analytical results for soil samples and the information provided in the 2017 Phase III ESA, prepared by Tetra Tech. As directed by OKIB, INAC and CN, this detailed quantitative risk assessment provides site-specific estimates of risk for receptors who may use the RoW for the following scenarios:

- Scenario No. 1: The Site is developed into a recreational trail and Federal soil and groundwater quality guidelines are applied. Details pertaining to the proposed construction of the recreational trail are provided in Appendix C.
- Scenario No. 2: The Site is developed into a recreational trail and Provincial soil and groundwater quality standards are applied.
- Scenario No. 3: The Site is used for industrial purposes and Federal soil and groundwater quality guidelines are applied.

A fourth scenario involving industrial use under Provincial soil and groundwater quality standards was considered; however, since none of the soil analytical results exceeded the BC CSR industrial land use soil quality standards, a risk assessment for this scenario is not required.

Potential ecological exposures are evaluated as well, and potential exposure through migration to groundwater and surface water are discussed.

It is not expected that the Site will be desirable to ecological receptors. First, the Site was used as a rail line for several decades and as such, soil compaction has occurred; this will discourage if not prevent plant growth and decrease populations of larger soil invertebrates. Second, given historical use, the RoW is not a grazing area, nor does it provide suitable nesting areas for most ecological receptors. Third, the area around the rail line has been developed for residential and commercial/industrial purposes. It does not present a desirable habitat for most higher-order ecological receptors as there are less developed, more natural areas nearby that are less impacted by human activity. Last, a proposed future use Site is a recreational trail, which would be maintained to allow hiking and biking; this will also limit the desirability of the strip of land for ecological receptors as would any commercial/industrial land uses. Nonetheless, ecological receptors were considered in the screening of COPCs.

3.0 **REGULATORY GUIDELINES AND STANDARDS**

The risk assessment scenarios consider both Federal environmental guidelines and provincial Contaminated Sites Regulation standards.

The analytical data collected during the Phase II and Phase III ESA's and the 2018 Groundwater Quality investigation were compared to generic numerical guidelines provided by the following documents:

- CCME Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CSQG).
- CCME Canada Wide Standards for Petroleum Hydrocarbons (PHC) in Soil.
- CCME Canadian Water Quality Guidelines for Protection of Aquatic Life.
- Federal Contaminated Sites Action Plan (FCSAP) Federal Interim Groundwater Quality Guidelines (FIGQG).
- Health Canada Guidelines for Drinking Water Quality.
- BC Contaminated Sites Regulation Numerical Soil and Groundwater Standards.

3.1 Soil Quality Guidelines and Standards

CCME guidelines and CSR generic numerical standards were derived to protect human and ecological receptors based on generic scenarios developed for agricultural, residential/parkland, commercial, and industrial land uses.

For potential use of the Site as a recreational trail, RL/PL guidelines and standards are applicable. Therefore, the assessment of risk associated with recreational use of the Site also incidentally assesses the risk associated with residential use of the Site.

If the Site were to be used for industrial purposes, then industrial land use (IL) guidelines and standards are applied. It is noted that industrial use guidelines and standards are equivalent to commercial land use (CL) guidelines and standards for the potential contaminants of concern investigated. CL standards are therefore referenced interchangeably with industrial standards in this report.

In addition to land use, the following additional factors are considered when selecting CCME numerical soil quality guidelines:

- CCME guidelines for petroleum hydrocarbons include differing standards for fine and coarse-grained soil. "Coarse" means coarse-textured soil having a median grain size of > 75 µm and "Fine" means fine-textured soil having a median grain size of ≤ 75 µm; as defined by the American Society for Testing Materials. Based on visual observations of the material logged during testpitting and borehole drilling, the soil analytical results were compared to the more conservative guidelines for coarse grained soils.
- For PAHs naphthalene and phenanthrene, the CCME provides the option of applying either a guideline protective of aquatic life, or an alternative guideline if impact to freshwater surface water is not a concern. Based on the presence of Duck Lake, Tetra Tech determined it was appropriate to assess PAHs against the freshwater aquatic life protective guidelines.
- Two types of human health guidelines are provided for PAHs. Benzo[a]pyrene Total Potency Equivalents (B[a]P TPE) is a calculated value protective of direct contact with contaminated soil. The B[a]P TPE guideline selected for this project was based on an incremental lifetime cancer risk of 1 in 100,000 (10-5). This is consistent with risk-based standards applied provincially.
- The second human health guideline for PAHs is the Index of Additive Cancer Risk (IACR) which is protective of potable water resources. The Federal Interim Water Quality Guidelines defers to provincial guidelines for the requirement to protect groundwater for current or future use as potable water source. BC MoE and Climate Change Strategy Protocol 21 for Contaminated Sites: Water Use Determination (November 2017), indicates that standards protective of drinking water apply to a site if a drinking water supply is currently within 500 m of the site or if the aquifer underlying the site is suitable to supply drinking water based on the aquifer's hydraulic conductivity, yield and water potability. As the BC MoE has mapped an aquifer beneath the Site that can potentially be a potable water source, Tetra Tech infers that guidelines and standards protective of potable water are applicable to the Site.

The CSR also provides Matrix Numerical Soil Standards for the assessment and remediation of soils. Matrix standards are risk-based standards that depend on land use and also a number of site-specific factors. The following CSR Matric Numerical Soil-Specific Factors are considered potentially applicable to the Site:

- Intake of contaminated soil.
- Toxicity to soil invertebrates and plants.
- Groundwater flow to surface water used by aquatic life.
- Groundwater used as drinking water.

3.2 Water Quality Guidelines and Standards

The FIGQG provide guidance on the application of federal standards to groundwater and receiving waterbodies. For groundwater greater than 10 m from a surface waterbody, the FIGQG will apply. For groundwater within 10 m of a surface waterbody, the Canadian Water Quality Guidelines for the Protection of Aquatic Life would apply. For the contaminants of concern for this Site, the FIGQG and the Canadian Water Quality Guidelines are equivalent. The FIGQG are issued as Tier 1 and Tier 2 standards. Tier 1 standards are generic numerical standards that may be directly applied to all sites. Tier 2 standards allow consideration of site-specific conditions and exposures, by removing exposure pathways that are not complete for the site of interest. Both have been used in this assessment, as Tier 1 standards are used as a first step in the screening process.

FIGQG also includes differing standards for fine and coarse-grained soil. As discussed above Tetra Tech has applied guidelines based on the presence of coarse-grained soil.

The FIGQG Tier 2 Guidelines contain standards for specific to water use, receptors, or exposure pathways. Tetra Tech has applied the most stringent of the Tier 2 Guidelines protective of Soil Organisms Direct Contact and Freshwater Life. For this Site, the most stringent FIGQG were the protection of freshwater aquatic life.

The FIGQG also provides guidance on the application of the Guidelines for Canadian Drinking Water Quality (GCDWQ). The GCDWQ are to be applied to protect potable water sources; while the guidelines are intended to be applied at the point of exposure (i.e., tap) the FIGQG recommend they be used when investigating groundwater that could be used as a drinking water source. The determination of a particular aquifer as a potable water source is under provincial jurisdiction. As discussed above, Tetra Tech has determined that drinking water guidelines should apply to the Site.

Similarly, CSR Generic Numerical Water Standards protective of freshwater aquatic life and drinking water have been applied to the analytical data collected from the Site.

4.0 IDENTIFICATION OF CONTAMINANTS OF POTENTIAL CONCERN

Those substances (specifically copper, PAHs, and PHC F3) whose maximum measured concentrations exceeded the CCME RL/PL and CL guidelines, or CSR RL/PL and CL numerical standards were then carried forward for further screening, specific to human or ecological receptors, to determine if pathways are complete and then to evaluate risks.

Data was summarized, providing minimum, maximum, frequency of detection, average concentrations, and the calculated 95th percent upper confidence limit of the mean (95UCL) concentration for each contaminant of potential concern (COPC). The 95UCL is used as the exposure concentration rather than the maximum detected concentration in the calculation of risk. For this assessment, all soil samples collected from the Site and analyzed were used. If duplicate samples were available, the higher of the original or duplicate analytical result was used for each analyte.

4.1 Contaminants of Potential Concern – Soil

Table 4-1 presents the maximum detected concentration of each metal detected in soil in the 2016 and 2017 sampling efforts. Table 4-2 presents the same information for PHCs and PAHs. Sample-specific results are included in Appendix B. Note that chemicals were retained as a COPC if they exceeded any of the guideline screening values. However, in the Phase II ESA, it was established that chromium, nickel, and zinc in soil were not contaminants of potential concern based on statistical analysis in accordance with MOE Technical Guidance 2 For Contaminated Sites; Statistical Criteria for Characterizing a Volume of Contaminated Material (January 2009), and they have not been carried forward in the risk assessment.

Chemical	Frequency of Detection	Maximum Detected Value (ug/g)	CCME RL	CSR RL	CCME - CL	CSR CL	COPC
Antimony	132/193	2.3	20	20	40	40	No
Arsenic	193/193	8.6	12	15 ^{#1}	12	15 ^{#1}	No
Barium	193/193	311	500	400 #1	2000	400 #1	No

Table 4-1 COPC Selection for Metals in Soil

						1	1
Chemical	Frequency of Detection	Maximum Detected Value (ug/g)	CCME RL	CSR RL	CCME - CL	CSR CL	COPC
Beryllium	193/193	1.2	4	4	8	8	No
Boron	26/193	6	-	-	-	-	No
Cadmium	193/193	0.69	10	3 ^{#1,2}	22	25 ^{#1,2}	No
Chromium	193/193	78.5	64	60 ^{#1}	87	60 ^{#1}	No ^(#3)
Cobalt	193/193	24.8	50	50	300	300	No
Copper	193/193	239	63	150 ^{#1,2}	91	250 #1,2	Yes
Lead	193/193	49.7	140	400 #1,2	260	700 #1,2	No
Lithium	193/193	37.7	-	1600 ^{#3}	-	20,000	No
Manganese	193/193	882	-	1800 ^{#3}	-	19,000	No
Mercury	15/193	0.83	6.6	15 ^{#1}	24	40 ^{#1}	No
Molybdenum	193/193	5.5	10	10	40	40	No
Nickel	193/193	69.7	45	100	89	500	No ^(#3)
Selenium	24/193	0.72	1	3	2.9	10	No
Silver	24/193	0.3	20	20	40	40	No
Strontium	193/193	94.2	-	47,000 ^{#3}	-	100,000	No
Thallium	118/193	0.4	1	-	1	-	No
Tin	193/193	5.6	50	50	300	300	No
Uranium	193/193	3.83	23	16 ^{#3}	33	200	No
Vanadium	193/193	93.5	130	200	130	-	No
Zinc	193/193	506	200	450 ^{#1,2}	360	600 ^{#1,2}	No ^(#3)

NOTES:

^{#1} CSR Schedule 5 Matrix Numerical Soil Standard

 $^{\rm \#2}$ Standard is Ph dependent. Values shown based on a pH of 7.9

^{#3} Previously found in Phase II ESA to be not a COPC based on MoE Technical Guidance 2 for Contaminated Sites

- No guideline/standard exists

Table 4-2. COPC Selection for PHCs and PAHs in Soil

Parameter	Frequency of Detection	CCME - Residential/ Parkland	CCME - Commercial	CSR – RL/PL	CSR - CL	Maximum	COPC
2-methylnaphthalene	33/182	[18] ^{#2}	-	-	-	0.53	No
Acenaphthene	33/182	0.28	0.28	-	-	0.073	No
Acenaphthylene	64/182	320	320	-	-	1.07	No
Anthracene	84/182	2.5	32	-	-	1.43	No
Benz(a)anthracene	65/182	1	10	1	10	0.677	No
Benzo(a)pyrene	73/182	20	72	5	10 ^{#1}	1.3	No
Benzo(b)fluoranthene	85/182	1	10	1	10	2.52	Yes
Benzo(g,h,i)perylene	76/182	-	-	-	-	16.2	Yes (#1)

Parameter	Frequency of Detection	CCME - Residential/ Parkland	CCME - Commercial	CSR – RL/PL	CSR - CL	Maximum	COPC
Benzo(k)fluoranthene	69/182	1	10	1	10	1.14	Yes
Chrysene	75/182	[110] ^{#2}	-	-	-	1.72	No
Dibenz(a,h)anthracene	66/182	1	10	1	10	0.302	No
Fluoranthene	80/182	50	180	-	-	1.68	No
Fluorene	32/182	0.25	0.25	-	-	0.19	No
Indeno(1,2,3- c,d)pyrene	70/182	1	10	1	10	3.54	Yes
Naphthalene	36/182	0.013	0.013	5	50	0.271	Yes
Phenanthrene	49/182	0.046	0.046	5	50	0.864	Yes
Pyrene	67/182	10	100	10	100	1.72	No
B(a)P Total Potency Equivalent		5.3	5.3	-	-	1.09	No
B[a]P TPE multiplied by 3*		5.3	5.3			6.93	Yes
IACR (CCME)		1	1	-	-	31.6	Yes
		Petrol	eum Hydrocarb	oons			
F3	22/158	300	1700	-	-	988	Yes
F4	2/158	2800	3300	-	-	241	No

Note^{: #1} Retained for further evaluation as a screening guideline is not available

Of the suite of metal parameters analyzed in soil during the Phase II and Phase III ESA's only copper concentrations exceeded the numerical soil quality guidelines and standards. Copper at a maximum concentration of 239 ug/g exceeded CCME residential/parkland screening guideline of 63 ug/g; the CSR residential/parkland numerical standard of 150 ug/g; and the CCME commercial land screening guideline of 91 ug/g. The CCME guidelines are based on the direct soil contact by invertebrates. The human health based CCME soil guidelines are 1,100 ug/g for residential/parkland and 4,000 ug/g for commercial lands. Therefore, copper, is further evaluated for risk to ecological receptors but not for human health risk.

Of the suite of PAH parameters analyzed in soil during the Phase II and Phase III ESAs, only concentrations of benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, naphthalene, and phenanthrene exceeded the numerical soil quality guidelines and standards. Benzo(a)pyrene and benzo(g,h,i)perylene were also retained as COPCs for the risk assessment as these parameters are included in the B(a)P TPE and IACR calculated values, which also exceeded the CCME numerical guideline. Each PAH COPC is discussed below.

Benzo(b)fluoranthene at a maximum concentration of 2.52 ug/g exceeded CCME guideline and CSR numerical soil quality standard of 1 ug/g. The human health-based CSR numerical standard is 50 ug/g, and based on this concentration benzo(b)fluoranthene is not of concern to humans. However, it was retained to estimate the risk posed by the B(a)P TPE and IACR calculated values. The maximum concentration exceeded the ecological screening value and, therefore, was retained as an ecological COPC, as well.

- Benzo(g,h,i)perylene was detected at a maximum concentration of 16.2 ug/g. There are no CCME and CSR screening values for this PAH, so it was retained for further evaluation. While there is no human health-based CCME guideline or CSR standard for benzo(g,h,i)perylene, the toxicity equivalency value listed in CCME 2010 is 0.01, which denotes the toxicity of benzo(g,h,i)perylene relative to benzo(a)pyrene. Therefore, the CSR soil quality guideline value for benzo(a)pyrene of 5 ug/g was adjusted for toxicity and a value of 500 ug/g was used for the screening of benzo(g,h,i)perylene. As the maximum concentration for benzo(g,h,i)perylene is far below this guideline, it is unlikely to pose a threat to human health. However, it was retained for an evaluation of risk posed by the B(a)P TPE and IACR calculated values. It was also retained for further evaluation in the ecological risk assessment.
- Benzo(k)fluoranthene at a maximum concentration of 1.14 ug/g marginally exceeded the CCME guideline and CSR numerical standard of 1 ug/g. This standard is based on ecological receptors. The CSR numerical standard for human health is 50 ug/g, and based on this value, benzo(b)fluoranthene is not a concern in the human health risk assessment. However, it was retained in the human health risk assessment for evaluation of risk posed by the B(a)P TPE and IACR calculated values. It was also retained in the ecological risk assessment for further evaluation.
- Indeno (1,2,3-c,d) pyrene at a maximum concentration of 3.54 ug/g exceeds the CSR numerical standard of 1 ug/g. This value is based on ecological receptors. The CSR numerical standard for human health is 50 ug/g, and based on this value, indeno(1,2,3-c,d)pyrene is not a concern in the human health risk assessment. However, it was retained in the human health risk assessment for evaluation of risks posed by the B(a)P TPE and IACR calculated values. It was also retained in the ecological risk assessment for further evaluation.
- Naphthalene The maximum concentration of 0.271 ug/g exceeds the CCME guideline of 0.013 ug/g, which is based on the protection of freshwater life. However, there has been no detection of naphthalene in groundwater (discussed in the Section 3.2). Further, naphthalene was detected in only 36 out of 182 samples, indicating only localized surficial impacts over the entire length of the Site. Based on a lack of complete exposure pathway, the maximum concentration of naphthalene was compared to guidelines for soil and food ingestion pathways for ecological receptors of 8.8 ug/g (CCME 2008a) as no direct contact guideline for naphthalene is listed in CCME 2008a. As naphthalene is below this guideline, it was not retained as a COPC for ecological receptors. No human health guideline is available for naphthalene from CCME 2008a. Instead, a soil screening value of 11 ug/g (calculating using residential exposure values and toxicity values from Health Canada) was used to evaluate the potential for human impacts; as the maximum value was below this, naphthalene was not retained as a COPC for human health risks. Naphthalene concentrations in soil, therefore, do not pose an unacceptable risk for RL/PL and CL land uses.
- Phenanthrene The maximum concentration of 0.414 ug/g exceeds the CCME guideline of 0.046 ug/g, which is based on the protection of freshwater life. However, there has been no detection of phenanthrene in groundwater (discussed in the Section 3.2). Further, phenanthrene was detected in only 49 out of 182 samples, indicating only localized surficial impacts over the entire length of the Site. Based on a lack of complete exposure pathway, the maximum concentration of phenanthrene was compared to guidelines for soil and food ingestion pathways for ecological receptors of 43.3 ug/g (CCME 2008a) as no direct contact guideline for phenanthrene is listed in CCME 2008a. As phenanthrene is below this guideline, it was not retained as a COPC for ecological receptors. No human health guideline is available for phenanthrene from CCME 2008a. Instead, a soil screening value calculated for residential exposures and toxicity values from Health Canada of 120 ug/g was used to evaluate the potential for human impacts; as the maximum value was below this, phenanthrene was not retained as a COPC for human health risks. Phenanthrene concentrations in soil, therefore, do not pose an unacceptable risk for RL/PL and CL land uses.

Therefore, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, and indeno(1,2,3-c,d) were retained for both the human health and ecological risk assessments.

The comparison of petroleum hydrocarbon detected values against the CCME screening values indicated that the maximum concentration of F3 was above residential/parkland screening levels. F2 was not detected, and F4 was detected only twice, at concentrations well below screening values. F3 was further evaluated.

F3: The soil quality guideline of 300 mg/kg is based on direct contact of soil invertebrates and plants to F3. Out of 158 samples, PHC F3 was detected 22 times. Twelve of the 22 detected concentrations were above 300 mg/kg. Eleven of the detects were in the first 0.15 m soil depth and one was detected at 0.4 m. The data show that F3 is not migrating beyond a shallow depth. Given the localized nature of these detection, that the screening value is based on a decrease of soil invertebrates or plants at the population level, and that an average concentration would be far below the 300 mg/kg value, F3 was not retained as an ecological COPC. In addition, the human health-based guideline (residential land use) for PHC F3 is 15,000 mg/kg. The maximum detected F3 concentration is 988 mg/kg, far below the human health-based standard, and F3 was eliminated from further consideration in the human health risk assessment.

Table 4-3 presents the data summary of COPCs remaining after the screening of soil samples from 0 to 0.7 m depth interval collected in for the Phase II and Phase III ESAs in 2016 and 2017 from the length of the RoW within the Site. Minimum and maximum concentrations are shown, along with detection frequency and the mean of detected values. The data distribution was determined using ProUCL, which also produced a 95 UCL concentration that is used as an exposure concentration.

Chemical	Minimum Concentration (ug/g)	Maximum Concentration (ug/g)	Frequency of Detection	equency of Mean of 95UCL Detection Detects		Distribution					
Metals											
Copper	6.9	239	193/193	48.8	63.2	Not Discernable					
	Polycyclic aromatic hydrocarbons										
Chemical	Minimum Concentration (ug/g)	inimum Maximum centration Concentration De (ug/g) (ug/g)		Mean of Detects	95UCL	Distribution					
Benzo(a) pyrene	0.01	1.3	73/182	0.288	0.118	Lognormal					
Benzo(b)fluoranthene	0.01	2.52	85/182	0.452	0.284	Gamma					
Benzo(g,h,i) Perylene	0.021	16.2	76/182	1.765	0.881	Lognormal					
Benzo(k) fluoranthene	0.011	1.14	69/182	0.234	0.122	Gamma					
Indeno(1,2,3-c,d)pyrene	0.021	3.54	70/182	0.64	0.345	Gamma					

Table 4-3: Data Summary for COPCs in Surface Soil (0 – 0.7 m bgs)

4.2 Contaminants of Potential Concern - Groundwater

The following table includes the chemicals whose maximum concentrations exceeded the WQG as shown in Table 4-4. Four groundwater wells were installed, and the following samples were collected in April 2018. The samples were analyzed for copper and PAHs. Only copper and dibenzo(a,h)anthracene were detected, as shown below. Analytical results for groundwater are included in Appendix C.

Table 4-4. Groundwater Data

COPC	Frequency of Detection	Minimum Concentration	Maximum Concentration	Guideline Concentration	Guideline Source/Pathway	COPC?
Copper	8/8	0.00042 mg/L	0.00522 mg/L	0.002 mg/L	FIGQG for Freshwater Aquatic Life	No – As discussed below
Dibenzo(a,h) anthracene	1/4	0.017 ug/L	0.017 ug/L	0.26 ug/L	FIGQG for Freshwater Aquatic Life	No

Only one of the eight collected groundwater samples exceeded the FIGQG for freshwater aquatic life and this single sample was collected from groundwater monitoring well 18MW01 located more than 500 m upgradient of Duck Lake. As discussed in Section 2.3 this single result is not suspected to be attributable to historical rail way activities. In accordance with the Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites the protection of freshwater aquatic life can be excluded from consideration if dissolved phase contaminants are greater than 500 m away from a downgradient surface water body. Therefore, copper in groundwater is not considered to be a contaminant of potential concern.

The measured dissolved copper concentrations were also below the Health Canada Guideline for Drinking Water. Health Canada does not provide a drinking water guideline for Dibenzo(a,h)anthracene.

Tetra Tech concludes there are no COPCs in groundwater.

4.3 Other Environmental Media

Based on site history, samples collected for characterization and potential site reuse, it was determined that only soil and groundwater were media of concern. Soil vapour and indoor air are not media of concern because there are no volatile components for COPCs and no potentially complete exposure pathways; therefore, no samples were collected during this investigation for these media. Similarly, no fish tissue, plants, or wild game samples were collected as these pathways are not complete for this Site.

5.0 HUMAN HEALTH RISK ASSESSMENT

In Canada, risk assessment has been accepted by provincial and federal governments as a valid method to guide management decisions. The risk assessment methods for this assessment were based on the following guidance documents:

- British Columbia Ministry of Environment and Climate Change Strategy (BC MoE) Protocol 13 for Contaminated Sites: Screening Level Risk Assessment, Version 3, November 1, 2017.
- BC MoE Technical Guidance 7 for Contaminated Sites: Supplemental Guidance for Risk Assessment, Version 5.0, November 2017.
- BC MoE Technical Bulletin 2: Requirements for Human Health and Ecological Risk Assessments, September 15, 2015.
- Health Canada. 2010, updated 2012. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA).

- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part II: Health Canada Toxicological Reference Values (TRVs).
- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals.
- Health Canada. 2011. Federal Contaminated Site Risk Assessment in Canada Supplemental Guidance: Checklist for Peer Review of Detailed Human Health Risk Assessments (HHRA).

5.1 **Problem Formulation**

The purpose of the Problem Formulation component is to identify the chemicals, receptors, and exposure pathways that are applicable for the Site. The COPCs were identified above; however, further refinement of the COPCs was completed to focus on parameters that are most applicable to the individual human health risk assessments for the potential future use scenarios of a hiking/biking trail or industrial land use.

The objective of the exposure pathway identification is to determine all the potential routes by which human receptors could be exposed to COPCs in contaminated media from the Site. The results of the Problem Formulation phase are summarized in the development of a conceptual site model (CSM) that depicts the exposure pathways and receptors.

Humans potentially impacted by the COPCs were identified under the proposed land uses. It is noted that use of the RoW in winter months as a path for snowmobiles could be possible. However, snow cover and cold-weather clothing would prevent contact with surface soils. Therefore, direct exposure to the RoW is assumed to likely to occur for 9 months per year rather than 12 months.

Table 5-1. Potential Receptors

Receptor	Age Group	Rationale
Worker	Adult (20+ years)	 Industrial use of the land is possible. Generally, workers are assumed to be adults only with an exposure time of 8 hours/day and 250 days/year for 35 years.
Recreational Trail Users	Adult (20+ years) Teen (12 -19 years) Child (5 - 11 years) Toddler (7 months to 4 years)	 Recreational visitors to the RoW are expected to spend no more than an hour at the site while passing through, walking or biking and may not have daily or long-term exposures; this would occur for up to 9 months per year due to snow cover or weather conditions.

5.2 Exposure Pathway Identification for Human Health

An exposure pathway is a mechanism by which a human receptor is exposed to chemicals from a source. Several possible exposure pathways may exist at a site. The following four elements constitute a complete exposure pathway:

- A source and mechanism of chemical release;
- A retention or transport medium;
- A point of potential receptor contact with the affected medium; and
- A means of entry into the body at the contact point.

Complete pathways represent situations where there is potential for receptors to be exposed to contaminants. Incomplete pathways represent situations where exposure or contact with the contaminant is unlikely to occur, therefore, risk to the receptor is negligible.

The CCME guidelines contain site-specific factors for soil. The possible site-specific factors for residential/parkland land use are as follows: direct contact (ingestion and dermal contact), vapour inhalation, protection of potable groundwater, protection of groundwater for aquatic life, ecological soil and food ingestion, nutrient cycling, ecological soil contact, and management limits. Nutrient cycling is indicated as "not calculated" in CCME and, therefore, guidelines were not available at this time.

Of the pathways presented in the CCME soil guidelines, the human exposure pathways at the site are identified as complete or incomplete below.

5.2.1.1 Human Health – Soil Ingestion and Dermal Contact

Soil ingestion and dermal contact exceedance exist at the site for COPCs at or near the surface. People accessing the site currently or in the future may potentially be exposed to soil impacts. This exposure pathway would also be applicable for workers who could bring soil to surface. As such, this pathway is considered to be complete and was evaluated in this assessment.

5.2.1.2 Human Health – Vapour Inhalation

Subsurface vapours may migrate though soils and infiltrate into buildings (referred to as vapour intrusion) at distances up to 30 m from the PHC source (HC 2012). However, there are no buildings on the site and there were no volatile chemicals detected in surface soil. Therefore, this exposure pathway is considered incomplete and not further evaluated.

5.2.1.3 Human Health – Inhalation of Particulate Matter

Soil particles suspended in (outdoor) air would be expected to be inhaled by any people present on the Site. As such, this pathway is considered to be complete and was evaluated in this assessment.

5.2.1.4 Human Health – Drinking Water

The groundwater ingestion pathway is typically considered applicable if a Site is underlain by a potential domestic use aquifer or is within 500 m of a potential domestic use aquifer. BC MoE has mapped the underlying aquifer as a potential drinking water use aquifer. This exposure pathway is, therefore, considered potentially complete but drinking water was not further evaluated because there were no detected PAHs or dissolved copper in groundwater samples above drinking water guidelines (see Section 3.2). However, soil COPCs were evaluated as part of the IACR calculation.

5.2.1.5 Consumption of Berries, Plants, or Game

These exposure pathways consider ingestion of berries, plants, or wild game that may have accumulated COPCs from soil into their tissues. As the rail bed and location of impacted soil does not currently support plant growth, collection of berries or plants within the impacted area of the RoW does not occur. In addition, the RoW is not a desirable habitat due to lack of vegetation and previous use that has compacted the soil. It is adjacent to populated areas, and as such, would not be suitable for hunting. Therefore, consumption of berries, plants, and game exposure pathways were not retained for evaluation in the human health risk assessment.

5.2.1.6 Consumption of Fish

This exposure pathway considers consumption of fish that may have accumulated COPCs from surface water or sediment into their tissues. Migration of COPCs from the RoW has not been observed, and groundwater samples collected by Tetra Tech within 500 m of Duck Lake did not contain COPCs above CCME guidelines or CSR standards protective of aquatic life. Consumption of fish was, therefore, not retained for evaluation in the human health risk assessment.

5.2.1.7 Management Limits

As per CCME (2008b), PHC management limits must be applied at all soil depths if the ecological soil contact pathway has been eliminated. The management limit for PHC F3 is 2,500 mg/kg. There are no exceedances of the management limit of PHC F3 in surficial soils. A review of the individual factors considered by CCME in the development of the management limits has been reviewed relative to their applicability to the subject site as described below.

Free phase formation: Free phase PHC formation is undesirable because a free phase acts as a source of future contamination and may result in effects on indoor air quality and potable groundwater. No free-phase products have been identified on the ground surface in the area of the identified PHCs.

Effects on workers in trenches: Potential risks to humans working in trenches may occur since higher vapour infiltration rates occur in trenches compared with surface exposures. CCME (2008b) used a model to predict the influx of contaminant vapours into trenches. Exposure to PHC vapours for workers in trenches is a not concern with respect to the assessment of PHC F3 in soil, and therefore, this pathway is not complete.

Fire and explosive hazards: When PHC vapour concentrations exceed the lower explosive limit, combined with sufficient oxygen and an ignition source, a fire or explosive hazard exists. CCME (2008b) recommends a management limit for F3 of 2,500 mg/kg for coarse-grained soil for residential land use, and 3,500 mg/kg for commercial land use. Given the levels of identified PHC F3 soil impacts, a source of ignition is not likely to produce a fire hazard on this site.

Effects on buried infrastructure: Petroleum hydrocarbons can affect buried infrastructure, including underground utilities. There are no thresholds for F1 to F4 that would be protective of buried infrastructure. PHCs in the surface soils would not be in contact with deep buried utilities at the site, and therefore, have not been included as a pathway. Shallow buried infrastructure is unlikely at this site, given the compacted soil, projected reuse and the existing infrastructure already in place. Therefore, this is not likely a concern.

Aesthetic considerations: Aesthetic considerations at a site include odours, visible impacts on soils, and effects on the taste of potable water (CCME 2008b). PHC-impacted soil at this site is located at depths from surface to 0.4 mbgs. Odours are also not considered a concern due to the location of the identified PHCs in an open exterior environment.

Technological factors (i.e., difficulty of some soils to naturally bioremediate): The primary technological factor to be considered at PHC-impacted sites is the ability for biodegradation to occur, since this is the preferred method for remediating PHC in soils. The management limit for technological factors is driven by the difficulty in developing bioremediation systems for PHCs in the F3 and F4 ranges and the consideration of toxicity of F3 to ecological receptors. Since the PHC F3 impacted areas noted are discrete, small, and well below management limits addressing these technological factors is not considered necessary at the site.

5.3 Results of the Problem Formulation

Below is a summary of the Human Health COPCs that remain after the problem formulation.

Table 5-2: Summary of COPCs

Remaining COPCs	Pathway Human Health
Benzo(a)pyrene	Soil Ingestion, Dermal Contact Inhalation as part of the B(a)P TPE
Benzo(b)fluoranthene	Soil Ingestion, Dermal Contact, Inhalation as part of the B(a)P TPE
Benzo(g,h,i)perylene	Soil Ingestion, Dermal Contact Inhalation as part of the B(a)P TPE
Benzo(k)fluoranthene	Soil Ingestion, Dermal Contact Inhalation as part of the B(a)P TPE
Indeno(1,2,3-c,d)pyrene	Soil Ingestion, Dermal Contact Inhalation as part of the B(a)P TPE
IACR	Further evaluation of potential for PAHs in soil to leach to groundwater

5.4 Conceptual Exposure Model

A summary of the contaminant transport mechanisms, potentially impacted media, receptors of concern, COPCs, and potentially complete exposure pathways is presented in a conceptual exposure model shown below. This model applies to both future land use scenarios. Only operable exposure pathways are identified and evaluated further in the risk assessment.

5.5 Exposure Assessment

The exposure assessment provides the exposure point concentration, a description of the likely exposures, and the parameters to be used in the assessment of risk. Each is described below.

5.5.1 Exposure Point Concentrations

The exposure point concentration represents the concentration to which the identified receptors could be exposed under the pathways determined in the problem formulation. COPCs were selected from the most recent two data sets, and for soil, all samples were collected from a depth of 0 mbg to 0.7 mbg. ProUCL v 5.02 (USEPA 2016) was used to summarize the data for each COPC, determine its distribution, and calculate an upper bound concentration (the 95 percent upper confidence limit of the mean, 95UCL) to be used as the exposure point concentration. ProUCL recommends a minimum of 10 discrete sampling results to adequately estimate an exposure point concentration; over 150 samples were available for this Site. The sampling results from both the Phase II ESA and Phase III ESA sampling investigations were combined for the selected COPCs to determine an exposure point concentration for each to be used for risk assessment purposes. In instances where duplicate samples were available, the higher of the original or duplicate sample was used as representative of site conditions, and was included in the calculation of the exposure point concentration. Individual sample results were entered into ProUCL v. 5.02 (USEPA 2016) and the following summary statistics were produced: mean of detected concentration, data distribution, and 95UCL concentration. The ProUCL output data is located in Appendix D.

After the COPC screening, only benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, and indeno (1,2,3-c,d) pyrene in soil were retained as potential COPC for the human health

risk assessment. While these components were not found to exceed individual CCME or CSR human health screening values, they were retained to evaluate the BaP TPE and IACR as shown in Tables 5-3 and 5-4, below.

The above PAHs, as well as benzo(a)anthracene, chrysene, and dibenzo(a,h)anthracene were retained to evaluate the IACR. The IACR assesses potential threats to potable groundwater quality from leaching of carcinogenic PAH mixtures from soil. Although groundwater has not been found to have been impacted as measured by sampling gin April and June 2018, this evaluation was conducted to be conservative. The IACR is calculated by dividing the soil concentration (numerator) of each carcinogenic PAH by its soil quality guideline for protection of potable water component value (denominator) to calculate a hazard index for each PAH, and then summing the hazard indices for the entire PAH mixture per CCME guidance (2010). The following equation was used for this calculation:

IACR =

Benzo(a)anthracene/0.33 mg/kg + Benzo(b+ k)fluoranthene/0.16 mg/kg + Benzo(g,h,i)perylene/6.8 mg/kg + benzo(a)pyrene/0.37 mg/kg + Chrysene/2.1 + Dibenzo(a,h)anthracene/.23 + Indeno(1,2,3-c.d)pyrene/2.7 mg/kg

Table 5-3 and 5-4 present the TPA and IACR calculated values, respectively, along with the minimum detected concentration, maximum detected concentration, and frequency of detection for each PAH.

Chemical	Minimum (mg/kg)	Maximum (mg/kg)	Frequency of Detection	UCL (1) (mg/kg)	BaP TPE (2)
Benzo(a) pyrene	0.01	1.3	73/182 0.118		0.118
Benzo(b)fluoranthene	0.01	2.52	85/182	0.284	0.0284
Benzo(g,h,i) Perylene	0.021	16.2	76/182	0.881	0.00881
Benzo(k)fluoranthene	0.011	1.14	69/182	0.122	0.0122
Indeno(1,2,3-c,d)pyrene	0.021	3.54	70/182	0.345	0.0345
Benzo(a)anthracene (3)	0.01	0.677	65/182	0.0787	0.00787
				Total BaP TPE	0.21

Table 5-3: B(a)P TPE Assessment for Exposure Point Concentrations for Human Health COPCs

(1) Distribution generated by ProUCL and used by the program to estimate a UCL for use as an exposure point concentration. The listed UCLs are the recommended values from ProUCL.

(2) BaP TPE calculated as (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(benzo(g,h,i)perylene)(0.01)+(indeno(1,2,3-c,d)pyrene)(0.1)

(3) Benzo(a)anthracene UCL concentration based on gamma distribution as determined by ProUCL

Table 5-4: IACR Assessment for Exposure Point Concentrations for Human Health COPCs

Chemical	Minimum (mg/kg)	Maximum (mg/kg)	Frequency of Detection	UCL (1) (mg/kg)	IACR (2)
Benzo(a) pyrene	0.01	1.3	73/182	0.118	0.32
Benzo(b)fluoranthene	0.01	2.52	85/182	0.284	1.78
Benzo(g,h,i)perylene	0.021	16.2	76/182	0.881	0.13
Benzo(k)fluoranthene	0.011	1.14	69/182	0.122	0.76
Chrysene	0.01	1.72	75/182	0.137	0.065
Dibenzo(a,)anthracene	0.005	0.302	66/182	0.0303	0.13
Indeno(1,2,3-c,d)pyrene	0.021	3.54	70/182	0.345	0.13
Benzo(a)anthracene (3)	icene (3) 0.01 0.677 65/182		0.0787	0.24	
				Total IACR	3.55

- (1) Distribution generated by ProUCL and used by the program to estimate a UCL for use as an exposure point concentration. The listed UCLs are the recommended values from ProUCL.
- (2) IACR calculated as [benzo(a)anthracene/0.33 mg/kg +benzo(a)pyrene/ 0.37 mg/kg + benzo(b)fluoranthene/0.16 mg/kg + benzo(k)fluoranthene/0.16 mg/kg + benzo(g,h,i)perylene/6.8 mg/kg + indeno(1,2,3-c,d)pyrene/2.7 mg/kg + chysene/2.1 mg/kg + dibenzo(a,h)anthracene/0.23 mg/kg]
- (3) Benzo(a) anthracene, chrysene, and dibenzo(a,h) anthracene UCL concentration based on gamma distribution as determined by ProUCL

5.5.2 Exposure Parameters

As described in the problem formulation, human receptors identified included adult-aged residents, adult-aged workers, or seasonal recreational receptors. The recreational visitor is assumed to range in age from toddler to adult. It is anticipated that each of these receptors would be seasonal and temporary, as the site is planned for use as a recreational trail, but it would also be used by nearby residents more frequently, as well as being accessible to industrial purposes. All receptors were assumed to be present all months of the year and seven days per week, given the accessibility of the area. No adjustments were made for snow cover. The occasional visitor was assumed to be present two days/week for four months (32 days per year), using the trail when it is not snow-covered. Workers were also assumed to be present all year, and exposures are limited to adults only. However, the assessment of residential exposures will be protective of the recreational and industrial receptors, as well, as it assumes a more extensive and longer-term contact with the Site.

In the assessment of risks using the published guideline values, default exposure parameters applicable to residential receptors aged infant through adult are used. These were assumed to apply to the Site and were not changed. The residential assumptions used to assess exposures and estimate risks for this assessment as protective of all potential uses, as they include children, and represent a more extensive contact than either commercial or recreational exposures. The exposure parameters are listed below in Table 5-5.

Parameter	Adult (20+)	Teen	Child	Toddler
Exposure Time (hours)	8	8	8	8
Exposure Frequency (days)	Worker – 5	7	7	7
	Resident – 7			
	Visitor – 2			
Exposure (weeks/year)	Worker – 50	52	52	52
	Resident - 52			
	Visitor – 16			
Exposure Duration (years)	Worker – 35	80	80	80
	Visitor – 80			
Soil ingestion (g/day)	Worker – 0.1	0.02	0.02	0.08
	Resident – 0.02			
	Visitor – 0.02			
Body weight (kg)	70.7	59.7	32.9	16.5
Dermal Contact with soil	Hands, arms, and legs	Hands, arms,	Hands, arms, and	Hands, arms,
		and legs	legs	and legs
Inhalation rates (m ³ /day)	16.6	15.6	14.5	8.3

Table 5-5: Exposure Parameters Appropriate to Site Exposures

5.6 Hazard Assessment

The hazard assessment is the process of identifying the relevant and appropriate toxicity values required for evaluating potential human health effects related to predicted exposures to COPCs. It involves identification of the

potentially toxic effects of the COPCs and the determination of the amount of the COPCs that can be taken into the body without experiencing adverse health effects. This evaluation is included as Appendix E for benzo(a)pyrene, which is considered carcinogenic by CCME and against which the relative potencies are established.

5.7 Risk Characterization

In risk characterization, the exposure dose is multiplied by the slope factor to provide a probability estimate of the outcome. For benzo(a)pyrene equivalents, the total potency equivalent is compared to the screening value of 5.3; the ratio of the two values provides an estimate of risk. The following sections describe methods to calculate only carcinogenic risk estimates, as non-carcinogenic parameters were not identified as COPC for the human health risk assessment. In addition, the IACR was calculated and evaluated to determine the potential for PAHs to impact groundwater per CCME guidance (2010).

5.7.1 Benzo(a)pyrene Risk Characterization

Risk estimates for the carcinogenic COPCs were developed by comparing the calculated BaP TPE to the screening value for residential land use. The value is 5.3 BaP TPE (CCME 2010). The following equation was used:

Ratio =	Site-Specific Bap TPE
	Screening Value for BaP TPE

The ratio was 0.21/5.3, or 0.04. Using the calculated BaP TPE and multiplying by 3 to account for the source of PAHs being the railroad ties per CCME guidance, the ratio is 0.63/5.3, or 0.12. These ratios are well below 1.0

When the ratio is greater than the 1.0, the scenario poses a potential concern and requires further evaluation or risk management. Here, the ratio is well below 1.0 and provides an adequate margin of certainty for all exposures. This is because of the conservative assumptions used in developing the BaP TPE screening value (residential exposure).

5.7.2 IACR Calculation and Risk Characterization

The IACR calculated using the equation presented in Section 4.5.1. CCME guidance requires this calculation to screen for potential leaching of PAHs from soil to groundwater, to ensure the protection of potable water sources. Table 5-4 contains this calculation, and the sum of all PAHs totaled 3.55, using the 95UCL exposure point concentration for all samples from the site. Benzo(b)fluoranthene had an IACR value above 1, and benzo(f)fluoranthene had a value of 0.76. The screening shows a potential for groundwater impacts. However, groundwater sampling has not detected these PAHs. As well, PAHs were detected only in the top 0.4 m of soil and do not appear to be migrating through soil. Further, site-specific modeling documented in the Phase III ESA report has shown little potential for leaching of PAHs to groundwater. Despite the exceedance of the guideline, site-specific information demonstrates that leaching is not a concern for this Site.

5.7.3 Risk Estimate Results

The concentrations and associated risks from PAHs at this Site are within the acceptable range when based on the 95 UCL concentration for each identified COPC. The calculated BaP TPE is far below the level of concern of 5.3 and the ratio of site to screening level TPE is far below 1.0. CCME guidance recommends that the B(a)P TPE be multiplied by 3 to account for the source of the PAHs and for PAHs that may be present but not detected; this value is 0.06 and is also well below the screening value of 5.3. Therefore, human health impacts are unlikely for this Site.

Further, the IACR was calculated using the 95UCL concentrations to determine a potential for leaching to groundwater. While the IACR total was above 1.0 (the screening value), this was due mainly to

benzo(b)fluoranthene and benzo(k)fluoranthene, neither of which were detected in groundwater samples nor were they often found below 0.4 m bgs. They were located within the railbed and were not detected in embankments or beyond, indicating very little potential for migration. Based on this analysis, it is not expected that PAHs will leach to groundwater and there is no threat to human health.

In addition, the planned reuse will not expose deeper soils, and will not result in exposures more extensive than assumed here. Residential land use is the most extensive exposure assumption for this RoW, and is protective of industrial uses, workers, or recreational exposures.

6.0 ECOLOGICAL RISK ASSESSMENT

The Ecological Risk Assessment was completed to assess risks to ecological receptors associated with soil impacts at the Site. It was completed for the protection of species at risk (SAR) at an individual level and non-SAR at a community/population level. The risk assessment methods for this assessment were based on the following guidance documents:

- Canadian Council of Ministers of the Environment. 1996. A Framework for Ecological Risk Assessment: General Guidance;
- Environment Canada. 2012a. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance;
- Environment Canada. 2012b. Federal Contaminated Site Action Plan (FCSAP) Supplemental Guidance for Ecological Risk Assessment – Standardization of Wildlife Receptor Characteristics; and
- British Columbia Ministry of Environment, Lands, and Parks. 1998. Protocol #1: Recommended Guidance and Checklist for Tier 1 Ecological Risk Assessment of Contaminated Sites in British Columbia.

6.1 **Problem Formulation**

The purpose of the Problem Formulation component is to identify how the chemicals, receptors, and exposure pathways interact at the Site. The COPCs were identified above in Section 3.0; however, further refinement of the COPCs was completed to focus on parameters that are most applicable to the ecological risk assessment. Individual pathways included in the guideline derivation for ecological health were reviewed for the current and surrounding land use – residential/parkland for ecological receptors.

Ecological receptors were selected by examining the activities that might occur under residential/parkland land use scenarios.

The objective of the exposure pathway identification is to determine all of the potential routes by which ecological receptors could be exposed to COPCs in contaminated media from the site. The results of the Problem Formulation phase are summarized in the development of a CSM that depicts the exposure pathways and receptors.

6.2 Ecological Receptors

A desktop biological inventory was completed in order to identify what plants and animals would likely be living at or foraging for food at the site, and potentially exposed to contaminated soils, groundwater and/or surface water at the site, using information from the British Columbia Ministry of Forests (1991). The results of this assessment are presented below. A basic summary of the plants and animals that may be present at the site is contained in the following paragraphs.

While there are many ecological species that could be present in a site setting, it is not practical to evaluate all species. Risk assessments must limit their focus on only some of the specific animals that might use a site. Representative receptors selected for the risk assessment are those that have the greatest potential for exposure, that play a key role in the food web, and that have sufficient characterization data to facilitate calculations of exposure and health risks. A receptor of concern is generally a single species which serves a surrogate for the other related species. The following criteria from CCME (1996) and Environment Canada (EC) (2012a, 2012b) were used to select the receptors evaluated in the risk assessment:

- Potentially sensitive to the substances identified at a site;
- Known or expected habitat of animals recognized by the government as threatened or endangered or of special concern;
- Year-round residents at a site;
- Migratory birds, where a significant proportion of the population is concentrated in the vicinity of a site during certain periods;
- Dominant within local biological communities, or functioning as keystone species within nearby ecosystems;
- Recognized as good indicators or surrogate species (i.e., representative of other similar organisms of a general type and feeding niche);
- Of aesthetic value or of value to the local human population; or
- Of recreational importance.

6.2.1 General Ecozone Evaluation

The Site is located in the Interior Plateau Region of British Columbia, specifically the Thompson-Okanagan Plateau. This ecozone encompasses the area of Kelowna, Kamloops, and Penticton. It is identified as the Interior Douglasfir (IDF) zone with a continental climate characterized by warm, dry summers and cool winters. The land is characterized by rolling plateaus and major valley systems of the Okanagan, Thompson, and Nicola Rivers. The mean annual temperature of the IDF zone is approximately1 6°C to 9.5°C. The mean annual precipitation ranges 300 mm to 750 mm, and over 1000 mm in the wettest areas.

Vegetation in the zone is characterized by spruce, subalpine fir, and ponderosa pine while lower elevations are characterized by forests of ponderosa pine with grass understory, mixed with aspen, white spruce, and Douglas fir. Valley bottoms support open stands of Douglas fir, pine grass, ponderosa pine, as well as bluebunch wheatgrass and sagebrush. BC MoE classifies the region as Interior-Douglas fir with Montane spruce areas.

The range of wildlife in the Thompson-Okanagan Plateau is varied, and includes California big horn sheep, mule and white-tailed deer, elk, black bear, coyote, bobcat, cougar, wolverine, blue grouse, and waterfowl. Large carnivores include black and grizzly bear, bobcat, and cougar. Small predators include the coyote, badger and wolverine. The smaller herbivores include the golden-mantled ground squirrel northern pocket gopher, yellow-bellied marmot, southern red-backed vole, and red squirrel (BCMoF 1991, BCMoE 2018).

Reptiles and amphibians that may be present include the rubber boa, western rattlesnake, pacific tree frog, and the tiger salamander (in riparian areas) (BCMoF 1991, BCMoE 2018).

Some of the birds of prey in this area are the broadwinged hawk, Swainson's hawk, common nighthawk, and various owls. Waterfowl are the pacific, and red-throated loons, red-breasted merganser, and the various kinds of geese, ducks, and swan. Forest birds include the white-crowned, common, and yellow-billed sparrow, red-winged

blackbird, yellow warbler, song sparrow, America robin, and the barn swallow. Ground-dwelling birds include the spruce grouse, white-tailed ptarmigan, ring-neck pheasant, and gray partridge (BCMoE 2018).

Based on the site information, the areas surrounding the site provide a desirable habitat for some ecological receptor groups, such as small mammals and birds, as well as plants and soil invertebrates. However, the site itself is narrow, generally devoid of vegetation, and comprised of compacted and non-native soils as it was used for a rail way. Additionally, large mammals have a large enough home range that potential exposure to this Site would be limited. Aquatic ecological receptors are not being carried forward into the risk assessment, as there is no waterbody near the northern stretch of the RoW, continued sampling of the soil has shown little potential for COPC migration, and groundwater in the vicinity has not been impacted based on current groundwater samples.

6.2.2 Species of Concern

Risk assessment guidance recommends that species listed as rare, endangered, or threatened with habitats confirmed to be present within the study area or likely to be present in the future, be included as receptors in a risk assessment (EC 2012a).

Based on the Species at Risk Act (SARA), the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) and the Species at Risk in British Columbia, there are a few threatened or species of special concern present in the region. In particular, there are many bird species that may be present in the area that are listed in SARA and COSEWIC (BCMoE 2018).

Terrestrial species listed as threatened or have special concern with a range that included the Site include the wolverine, grizzly bear, little brown myotis, fringed myotis, northern rubber boa, western skink, and western toad. Listed bird species include the barn swallow, yellow breasted chat, common nighthawk, western screech owl, olive sided flycatcher, banded tail pigeon, white-headed woodpecker, Williamson's sapsucker, and barn owl.

While this list of species at risk is varied, the impacted areas of the Site itself are not a desirable habitat and do not support vegetation, although vegetation is present on either side of the RoW. Given available and more desirable habitat nearby, limited size and location of the site (surrounded by residential and commercial developments in part) and the projected reuse including expanding the raised elevation and maintaining its use as a trail without vegetation, there is limited, if any, potential of exposure to listed species of concern to the site. Therefore, the identified species of concern in the region of the site do not need to be considered further.

6.3 Exposure Pathway Identification for Ecological Risk

An exposure pathway is a mechanism by which an ecological receptor is exposed to chemicals from a source. Several possible exposure pathways may exist at a site. The following four elements constitute a complete exposure pathway:

- A source and mechanism of chemical release;
- A retention or transport medium;
- A point of potential receptor contact with the affected medium; and
- A means of entry into the plant or animal at the contact point.

Complete pathways represent situations where there is potential for receptors to be exposed to contaminants. Incomplete pathways represent situations where exposure or contact with the contaminant is unlikely to occur, there risk to the receptor is negligible.

6.3.1 Soil

The CCME guidelines contain site-specific factors for soil. The site-specific factors for residential/parkland or industrial land use are as follows: direct contact (ingestion and dermal contact), vapour inhalation (slab-on-grade and basement), protection of potable groundwater, protection of groundwater for aquatic life, ecological soil and food ingestion, nutrient cycling, ecological soil contact, and management limits.

Of the pathways presented in the CCME soil guidelines, the ecological exposure pathways at the site are identified as complete or incomplete below.

6.3.1.1 Ecological Health – Soil Contact

The Site is not currently used but was used as a railway in the past. It is covered with gravel/compact soil consistent with that use. Vegetation (grasses, shrubs and trees) are located to either side of the RoW. The RoW may be snow covered during winter months. The ecological direct soil contact pathway is relevant for vegetation and soil invertebrates. Therefore, the ecological soil contact pathway is considered to be complete and was evaluated in this assessment.

6.3.1.2 Ecological Health – Freshwater Aquatic Life

The freshwater aquatic life pathway is applicable if a surface water body is located within 500 m downgradient of a site. In cases where the groundwater gradient is indeterminate, all surface water bodies within 500 m of the site are considered. This pathway is discussed as regards current soil and groundwater samples.

6.3.1.3 Ecological Health – Ingestion of Plants, Soil Invertebrates, and Prey

Plants and soil invertebrates can take up COPCs from soil into their tissues, which are then subsequently consumed by wildlife. Small mammals that are exposed to soil and food can also accumulate COPCs into their body. Therefore, food chain transfer was evaluated for birds and mammals.

6.3.2 Surface Water/Groundwater

Federal water quality guidelines for use at contaminated sites are applicable based on the proximity to surface waterbodies and drinking water, livestock watering or crop irrigation use. For groundwater within 10 m of a surface waterbody and for water samples collected directly from a waterbody, the CCME Canadian Water Quality Guidelines for the Protection of Aquatic Life for the protection of aquatic life apply.

For groundwater greater than 10 m from a surface waterbody, the FIGQG apply. The FIGQG include site specific factors for groundwater including: inhalation, soil organism direct contact, freshwater life, marine life, irrigation, livestock, and wildlife watering. The pathways for marine life, irrigation, livestock were not considered further as they do not apply to the Site or its future use. For the contaminants of concern for this Site, the FIGQG and the Canadian Water Quality Guidelines are equivalent.

6.3.2.1 Ecological Health – Freshwater Aquatic Life

The freshwater aquatic life pathway is applicable if a surface water body is located within 500 m downgradient of a site. In cases where the groundwater gradient is indeterminate, all surface water bodies within 500 m of the site are considered. However, this pathway was evaluated by assessing the potential for COPCs to migrate or leach from soil, as well as collection of groundwater samples to determine the presence of COPCs in groundwater. Soil data has shown little evidence of COPC migration and little potential for leaching. Groundwater samples were collected, and only very low concentrations of copper and one PAH were detected; all detections were below drinking water

quality guidelines. Therefore, while chemicals in soil were identified that exceeded the soil screening levels (Table 6-1, below), no further evaluation was conducted because sampling has shown no leaching or migration, and no impacts to groundwater

6.3.2.2 Results of the Problem Formulation

Below is a summary of the COPCs carried forward into the ecological risk assessment after the problem formulation. Bolded pathways have been carried forward.

Table 6-1: Summary of COPCs

Remaining COPCs		Pathway
	Terrestrial Ecological	Aquatic Ecological
	Metals	
Copper	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil
	Polycyclic Aromatic Hydroca	irbons
Benzo(a)pyrene	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil
Benzo(b)fluoranthene	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil
Benzo(g,h,i)perylene	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil
Benzo(k)fluoranthene	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil
Indeno(1,2,3-c,d)pyrene	Soil Organism Direct Contact	Although soil concentrations exceed soil
	Pathway is Complete	contact screening levels, Freshwater Life
		Pathway is not Complete and there is no
		indication that metals are leaching from soil

6.4 Conceptual Exposure Model

A summary of the contaminant transport mechanisms, potentially impacted media, receptors of concern, COPCs, and potentially complete exposure pathways is presented in a Conceptual Exposure Model below. The exposure models would apply to the three land use scenarios outlined in the Section 5.0, but the most stringent criteria have been used herein to evaluate potential hazards.

6.5 Exposure Assessment

Similar to the human health risk assessment, the exposure point concentration represents the concentration to which the identified receptors could be exposed under the pathways determined in the problem formulation. COPCs were selected from the most recent two data sets, and for soil, all samples collected from a depth of 0 mbg to 0.7 mbg. ProUCL v 5.02 (USEPA 2016) were used to summarize the data for each COPC, determine its distribution, and calculate an upper bound concentration (the 95 percent upper confidence limit of the mean, 95UCL) to be used as the exposure point concentration. ProUCL recommends a minimum of 10 discrete sampling results to adequately estimate an exposure point concentration. The sampling results from both the Phase II and Phase III ESA sampling investigations were combined for the selected COPCs to determine an exposure point concentration for each to be used for risk assessment purposes. In instances where duplicate samples were available, the higher of the original or duplicate sample was used as representative of site conditions, and was included in the calculation of the exposure point concentration. Individual sample results were entered into ProUCL v. 5.02 (USEPA 2016) and the following summary statistics were produced: mean of detected concentration, data distribution, and 95UCL concentration. The ProUCL output data is located in Appendix D.

Chemical	Minimum (mg/kg)	Maximum (mg/kg)	Frequency of Detection	UCL ⁽¹⁾ (mg/kg)	Distribution					
Metals										
Copper	6.9	239	193/193	63.2	Not Discernable					
		P/	AHs							
Benzo(a) pyrene	0.01	1.3	73/182	0.118	Lognormal					
Benzo(b)fluoranthene	0.01	2.52	85/182	0.284	Gamma					
Benzo(g,h,i) Perylene	0.021	16.2	76/182	0.881	Lognormal					
Benzo(k)fluoranthene	0.011	1.14	69/182	0.122	Gamma					
Indeno(1,2,3-c,d)pyrene	0.021	3.54	70/182	0.345	Gamma					

Table 6-2: Exposure Point Concentrations for Soil COPCs

⁽¹⁾ Distribution generated by ProUCL and used by the program to estimate a UCL for use as an exposure point concentration.

6.6 Hazard Assessment

The objective of the hazard (toxicity) assessment is to determine if chronic exposure of ecological receptors carries a risk of adverse health effects at the population level. For ecological receptors, the goal is not to protect each individual from any potentially toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained (SAB 2006). To evaluate this, the calculated 95UCL exposure concentration was compared to the lowest available screening concentration for ecological receptors from CCME

and CSR. COPCs for the ecological assessment included chromium, copper, nickel, zinc; and the PAHs benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene and indeno (1,2,3-c,d) pyrene. As shown in Table 6-3, there are no exceedances of the guideline levels based on the 95UCL concentrations of any of these COPCs. Use of the 95UCL concentration is recommended in the Tier 1 Ecological Risk Assessment Policy Decision Summary (BC MOE 2018).

Chemical	UCL ⁽¹⁾ (mg/kg)	Screening Level ⁽²⁾ (mg/kg)	Exceedance?	Ratio							
Metals											
Copper	63.2	64	No	0.99							
Benzo(a) pyrene	0.118	1	No	0.12							
Benzo(b)fluoranthene	0.284	1	No	0.28							
Benzo(g,h,i) Perylene	0.881	1	No	0.88							
Benzo(k)fluoranthene	0.122	1	No	0.12							
Indeno(1,2,3-c,d)pyrene	0.345	1	No	0.35							

Table 6-3. Comparison of Exposure Point Concentration to Ecological Screening Levels

⁽¹⁾ As calculated by ProUCL using all samples from the Phase II and Phase III ESA soil sampling.

⁽²⁾ Screening level is lowest value of CCME and CSR Residential/Parkland and Commercial Land Guideline levels.

6.7 **Ecological Risk Characterization**

Risk was evaluated for ecological receptors quantified by comparing the 95UCL concentrations to the ecological screening values in Table 6-3. The methodology used to calculate HQ values and the results are presented below.

6.7.1 Hazard Quotient Assessment

The potential for wildlife hazards can be estimated numerically using a HQ. A HQ is the ratio of the potential exposure to a single chemical to an estimated using the ecological screening level.

HQs were calculated for each COC-receptor combination as follows:

Hazard Quotient = Soil concentration (mg/kg) Screening Level (mg/kg)

If the HQ is less than or equal to 1.0, the COPC is considered to pose a negligible hazard to the receptor. Hazard quotients in excess of 1.0 should be reviewed and consideration given towards the assumptions used to estimate exposure, and the uncertainty used to derive the screening level. The soil concentration used for the HQ calculation was the 95UCL as determined by ProUCL, using data from the Phase II and Phase III ESA sampling and the lowest ecological screening level from CCME and CSR were sued for this analysis.

No ratios were above 1.0. The ratio for copper was close to 1.0 but the likelihood of chronic exposure for plants and invertebrates to the RoW trail is low, given the intentionally compacted soil and desire to keep it free from vegetation. In addition, Individual samples for copper that exceeded the guideline of 63 mg/kg were:

16TP02

16TP28

16TP34

16TP36

16TP34-E1

16TP39-W1

All of these samples were within the former rail bed and none were beyond the embankments.

Note that the CSR guideline for residential/parkland is 150 mg/kg and it is 250 mg/kg for commercial land use; the 95UCL concentration for copper is well below these levels. The CCME commercial land us guideline is 91 mg/kg also higher than the calculated 95UCL exposure concentration.

6.8 Risk Characterization

Given the lack of exceedance of stringent guidelines based on the exposure concentrations, it is unlikely that the RoW poses a risk to ecological receptors.

As show in Table 4-1 and 4-2, the maximum concentration of copper exceeded the lowest screening levels available for this metal. The screening levels were based on effects to ecological receptors. After aggregating the available soil data and calculating a 95UCL exposure concentration, the exposure concentration was compared to the screening levels and copper did not pose a risk to ecological receptors at the population level (Table 6-3). As the exposure concentrations were below the lowest screening levels, no risks are expected for any ecological receptors including sensitive, protected or endangered species.

Similarly, the 95UCL concentrations for PAHs that were retained as COPCs were also below the lowest ecological screening concentrations. Again, there were no exceedances, indicating that there is little potential for impacts to ecological receptors from this Site.

While comparison of maximum detected concentrations to CCME and CSR guidelines for ecological receptors identified individual locations of exceedances for the COPCs, the relatively small areas of impact, difficult growing conditions and low habitat quality due to coarse and compacted soil make it unlikely that the any COPC will have a population-level effect on plants or invertebrates. In addition, the overall exposure point concentrations did not indicate a potential for hazard. The lack of plants providing a food source to mammals and birds would also decrease the potential for foraging by terrestrial mammals. Further, reuse plans should include retaining the compacted soil RoW for use as a trail, limiting plant growth or soil invertebrates in the contaminated media.

7.0 CONCLUSIONS

In conclusion, the Site has been evaluated for human health risks and found to have little potential to adversely impact humans under residential, industrial, or recreational visitor scenarios. In addition, the Site has been evaluated for ecological risks and found to present little potential for adverse impacts to terrestrial or aquatic receptors. These conclusions are based on current site conditions as determined through soil and groundwater sampling, and are appropriate to potential future site use as a recreational trail, residential land use or industrial land use.

8.0 **CLOSURE**

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

Theresa K. Lopez, MSPH Senior Toxicologist, Human Health Risk Assessment Direct Line: 303.507.9160 theresa.lopez@tetratech.com

Don Williams, P. Eng. Senior Project Engineer Direct Line: 250.212.1825 don.williams@tetratech.com

REFERENCES

- British Columbia Contaminated Sites Regulation (including amendments up to B.C. Reg. 253/2016, November 1, 2017).
- British Columbia Ministry of Forests (BC MoF). 1991. Special Report Series 6: Ecosystems of British Columbia. Compiled and edited by D. Meidinger and J. Pojar.
- British Columbia Ministry of Environment and Climate Change Strategy (BCMOEC). Technical Guidance on Contaminated Sites #7: Supplemental Guidance for Risk Assessments. Version 5, November 2017.
- British Columbia Ministry of Environment and Climate Change Strategy (BCMOEC). Protocol 13 for Contaminated Sites: Screening Level Risk Assessment. Version 3, November 2017.
- British Columbia Ministry of Environment (BC MoE). 2015. Technical Bulletin 2: Requirements for Human Health and Ecological Risk Assessments. September 15, 2015.
- British Columbia Ministry of Environment and Climate Change (BCMoE). Contaminated Sites Protocol 21 Water Use Determination, Version 2 (November 2017),
- British Columbia Ministry of Environment (BC MoE). 2018. BC Conservation Data Centre Home. BC Species and Ecosystem Explorer. Accessed June 2018 at http://a100.gov.bc.ca/pub/eswp/

British Columbia Ministry of Environment and Climate Change Strategy (BCMOEC). 2018. Tier 1 Ecological Risk Assessment Policy Decision Summary. Ministry of Environment Lands, and Parks. Environment and Resource Management Department, Pollution Prevention and Remediation Branch, Risk Assessment and Integrated Pesticide Management. Victoria, British Columbia. Available at: https://www2.gov.bc.ca/gov/content/environment/air-land-water/site-remediation/guidanceresources/policiesstandards?keyword=Tier&keyword=1&keyword=Ecological&keyword=Risk&keyword=assessment&keywo rd=Policy. Accessed June 2018.

- Canadian Council of Ministers of the Environment (CCME), 2008a. Canadian Soil Quality Guidelines, Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects): Scientific Supporting Document.
- Canadian Council of Ministers of the Environment (CCME). 2008b. Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document.
- Canadian Council of Ministers of the Environment (CCME). 2010. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Polycyclic Aromatic Hydrocarbons.
- Canadian Council of Ministers of the Environment (CCME). 2015a. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health (CSQG).
- Canadian Council of Ministers of the Environment (CCME). 2015b. Canadian Water Quality Guidelines for the Protection of Aquatic Life.
- Federal Contaminated Sites Action Plan (FCSAP). 2016. Guidance Document on Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites (FIGQG).
- Canadian Council of Ministers of the Environment. 1996. A Framework for Ecological Risk Assessment: General Guidance:
- Environment Canada. 2012a. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance;
- Environment Canada. 2012b. Federal Contaminated Site Action Plan (FCSAP) Supplemental Guidance for Ecological Risk Assessment - Standardization of Wildlife Receptor Characteristics;

Health Canada. 2017. Guidelines for Canadian Drinking Water Quality.

- Health Canada. 2010, updated 2012. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA);
- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part II: Health Canada Toxicological Reference Values (TRVs);
- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals;
- Health Canada. 2011. Federal Contaminated Site Risk Assessment in Canada Supplemental Guidance: Checklist for Peer Review of Detailed Human Health Risk Assessments (HHRA);
- Science Advisory Board for Contaminated Sites (SAB). 2006. Draft Guidance for Detailed. Ecological Risk Assessments (DERA) in British Columbia.
- Tetra Tech 2016. Phase II Environmental Site Assessment, CN Rail Line Right-of-Way, Mile 105.9 to 106.6 and Mile 107.0 to 107.5, Duck Lake Indian Reserve 7.
- Tetra Tech 2017. Phase II Environmental Site Assessment, CN Rail Line Right-of-Way, Mile 105.9 to 106.6 and Mile 107.0 to 107.5, Duck Lake Indian Reserve 7.
- USEPA. 2016. ProUCL version 5.1.002. released May 2016. Available at https://www.epa.gov/land-research/proucl-software.

APPENDIX A PHASE II ESA AND PHASE III ESA DATA

			16TP06	DUP01		16TP11			16TP16			16TP22			16TP27	DUP05	
Parameter	Unit	RDL	0.7 m	DUPUT	RPD (%)	0.7 m	DOFUZ	RPD (%)	0 m	DOP03	RPD (%)	0.7 m	D0F04	RPD (%)	0 m	DUPUJ	RPD (%)
			11-Au	g-2016		11-Au	g-2016		12-Au	g-2016		12-Au	g-2016		12-Au	g-2016	
Physical Parameters																	
рН	pH Units	0.1	7.5	7.6	1	7.4	7.4	0	8.1	7.8	4	7.3	8.1	10	8.5	8.8	3
Moisture	%	0.1	7.6	7.9	4	10.3	10.3	0	0.7	2.4	<u>110</u>	1.2	1.2	0	1.7	1.7	0
Metals															1		
Antimony	µg/g	0.1	<0.1	<0.1	-	<0.1	<0.1	-	1.3	0.4	-	<0.1	<0.1	-	0.2	0.2	-
Arsenic	µg/g	0.4	1.3	1.4	-	1.3	1.2	-	4.1	3.2	25	0.7	0.7	-	2.3	2.1	9
Barium	µg/g	1	76	67	13	73	64	13	90	68	28	45	44	2	58	62	7
Beryllium	µg/g	0.1	0.4	0.4	-	0.4	0.4	-	0.2	0.2	-	0.3	0.2	-	0.2	0.2	-
Boron	µg/g	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Cadmium	µg/g	0.04	0.08	0.08	-	0.10	0.09	-	0.47	0.36	27	0.05	0.05	-	0.18	0.17	-
Chromium	µg/g	1	23.8	24.7	4	24.1	22.4	7	34.0	28.8	17	15.1	15.2	1	22.9	20.0	14
Cobalt	µg/g	0.1	11.2	11.3	1	11.3	10.9	4	9.4	8.0	16	7.1	7.4	4	6.1	6.1	0
	µg/g	0.2	12.2	13.2	8	11.7	12.4	6	113	60.8	<u>60</u>	6.6	7.2	9	25.7	29.2	13
Lead	µg/g	0.2	2.8	3.1	10	3.0	3.0	0	20.6	11.1	60	0.5	0.6	-	3.6	3.6	0
Lithium	µg/g	0.1	6.9	7.4	7	7.1	6.6	1	8.4	7.4	13	4.3	3.2	29	7.1	5.5	25
Manganese	µg/g	0.4	518	509	2	540	518	4	386	350	10	301	309	3	253	2/2	/
Melubanum	μg/g	0.04	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-
Niekel	μg/g	0.1	0.7	0.7	0	0.8	0.8	0	1.9	1.0	2	0.9	1.0	11	0.7	0.8	13
Nickel Selenium	μg/g	0.4	18.7	18.9	1	18.7	17.7	5	29.6	28.7	3	11.5	14.0	24	18.8	18.4	2
Silver	µg/g	0.3	<0.3	<0.3	-	<0.3	<0.3	-	-0.2	<0.3	-	<0.3	<0.3	-	<0.3	<0.3	-
Strontium	μg/g	0.2	39.9	36.0	- 10	42.8	36.7	- 15	<0.2 52 5	<0.2 51 7	2	28.6	28.8	1	32.3	31.1	-
Thallium	µg/g	0.2	-0 1	-0.1	-	42.0	50.7 <0.1	15	0.2	0.1	-	<0.1	20.0	-	-0 1	-01	-
Tin	µg/g	0.1	0.5	0.6	-	0.5	0.5	-	2.1	1.3	47	0.4	0.4	-	0.3	0.4	-
Uranium	µg/g	0.1	0.7	0.8	13	0.0	0.7	0	0.7	0.8	13	0.5	0.5	0	0.5	0.1	0
Vanadium	ua/a	0.4	48.0	53.3	10	46.9	46.4	1	48.5	42.4	13	33.1	33.2	0.3	29.9	30.6	2
Zinc	ua/a	2	59	60	2	58	62	7	71	80	12	37	63	52	38	39	3
Hydrocarbons	F3-3	_						-									-
F2 (C ₁₀ -C ₁₆)	µq/q	100	<100	<100	-	<100	<100	-	<100	<100	-	<100	<100	-	<100	<100	-
F2 (C ₁₀ -C ₁₆)-Naphthalene	hð/ð	100	<100	<100	-	<100	<100	-	<100	<100	-	<100	<100	-	<100	<100	-
F3 (C ₁₆ -C ₃₄)	µg/g	200	<200	<200	-	<200	<200	-	268	<200	-	<200	<200	-	<200	<200	-
F3 (C ₁₆ -C ₃₄)-PAH	µg/g	200	<200	<200	-	<200	<200	-	259	<200	-	<200	<200	-	<200	<200	-
F4 (C ₃₄ -C ₅₀)	µg/g	200	<200	<200	-	<200	<200	-	<200	<200	-	<200	<200	-	<200	<200	-
Polycyclic Aromatic Hydrocarbons (PAHs)																	
2-methylnaphthalene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	0.026	0.026	-	<0.010	<0.010	-	<0.010	<0.010	-
Acenaphthene	µg/g	0.005	<0.005	<0.005	-	<0.005	<0.006	-	0.039	0.025	44	<0.005	<0.005	-	<0.005	<0.005	-
Acenaphthylene	µg/g	0.005	<0.006	<0.005	-	<0.006	<0.005	-	0.348	0.431	21	<0.007	<0.007	-	<0.006	<0.008	-
Anthracene	µg/g	0.004	<0.004	<0.004	-	<0.004	<0.004	-	0.739	0.867	16	<0.004	<0.004	-	<0.004	<0.004	-
Benz(a)anthracene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	0.585	0.634	8	<0.010	<0.010	-	<0.010	<0.010	-
Benzo(a)pyrene	ug/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	1.17	1.30	11	<0.010	<0.010	-	<0.010	<0.010	-
Benzo(b)fluoranthene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	2.08	2.52	19	<0.010	<0.010	-	<0.010	<0.010	-
Benzo(g,h,i)perylene	µg/g	0.02	<0.020	<0.020	-	<0.020	<0.020	-	2.96	3.54	18	<0.020	<0.020	-	<0.020	<0.020	-
Benzo(k)fluoranthene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	1.02	1.14	11	<0.010	<0.010	-	<0.010	<0.010	-
Chrysene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	1.50	1.72	14	<0.010	<0.010	-	<0.010	<0.010	-
Dibenz(a,h)anthracene	µg/g	0.005	<0.005	<0.005	-	<0.005	<0.005	-	0.224	0.279	22	<0.005	<0.005	-	<0.005	<0.005	-
Fluoranthene	µg/g	0.01	<0.010	<0.010	-	< 0.010	< 0.010	-	1.05	0.777	30	<0.010	<0.010	-	<0.010	<0.010	-
	hð/ð	0.01	<0.0100	<0.0100	-	<0.0100	<0.0100	-	0.058	0.040	3/	<0.010	<0.010	-	<0.010	<0.010	-
Indeno(1,2,3-c,d)pyrene	µg/g	0.02	<0.020	<0.020	-	<0.020	<0.020	-	1./4	2.04	16	<0.020	<0.020	-	<0.020	<0.020	-
Inaprimalene	µg/g	0.01	<0.010	<0.010	-	<0.010	<0.010	-	0.030	0.030	-	<0.010	<0.010	-	<0.010	<0.010	-
	µg/g	0.02	<0.020	<0.020	-	<0.020	<0.020	-	0.281	0.022	10	<0.020	<0.020	-	<0.020	<0.020	-
	µg/g	0.02	<0.020	<0.020	-	<0.020	<0.020	-	1.12	0.823	19	<0.020	<0.020	-	<0.020	<0.020	-
	µg/g	0.01			-	<0.010	<0.010	-	1.90	2.27	14		<0.010	-	<0.010	<0.000	-
Laboratory Identification Number	µ9/9	0.002	6080046 12	6080046 27	-	50.002 6080046 22	50.002 6080046 29	-	6081025.05	6081025 21	10	6081025 19	50.002 6081025 22	-	6081025 27	6081025 22	-
Laboratory identification Number			0000340-12	0000940-27		0000940-22	0000940-20		0001035-05	0001030-31		0001030-10	0001030-32		0001030-27	0001030-33	

NOTES: -

RPD

Not analyzed or RPD not calculated.

< Concentration is less than the laboratory detection limit indicated.

RDL Laboratory Reportable Detection Limit

RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.

RPDs have only been considered where a concentration is greater than 5 times the RDL

High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). BOLD High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Parameter			16TP06			16TP11			16TP16	DUP03		16TP22	DUP04		16TP27	DUP05	
Parameter	Unit	RDL	0.7 m	20101	RPD (%)	0.7 m	00102	RPD (%)	0 m	00103	RPD (%)	0.7 m	20104	RPD (%)	0 m	001 03	RPD (%)
			11-Au	g-2016		11-Au	g-2016		12-Au	g-2016		12-Au	g-2016		12-Au	g-2016	
Volatile Organic Compounds (VOCs)																	
VH ₆₋₁₀	µg/g	20	<20	<20	-	<20	<20	-	<20	<20	-	<20	<20	-	<20	<20	-
VPHs	µg/g	20	<20	<20	-	<20	<20	-	<20	<20	-	<20	<20	-	<20	<20	-
Benzene	µg/g	0.02	<0.02	<0.02	-	<0.02	<0.02	-	<0.02	<0.02	-	<0.02	<0.02	-	<0.02	<0.02	-
Bromodichloromethane	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Bromoform	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Carbon tetrachloride	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Chlorobenzene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Chloroform	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Dibromochloromethane	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
1,2-Dibromoethane	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Dibromomethane	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
1,2-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,4-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1-Dichloroethane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,2-Dichloroethane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1-Dichloroethene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
cis-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
trans-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,2-Dichloropropane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Ethylbenzene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Methylene Chloride	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
МТВЕ	µg/g	0.04	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-
Styrene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Toluene	µg/g	0.2	<0.20	<0.20	-	<0.20	<0.20	-	<0.20	<0.20	-	<0.20	<0.20	-	<0.20	<0.20	-
1,1,1-Trichloroethane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1,2-Trichloroethane	µg/g	0.05	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-	<0.05	<0.05	-
Trichloroethene	µg/g	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-
Trichlorofluoromethane	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Vinyl chloride	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Xylenes Total	µg/g	0.1	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-	<0.10	<0.10	-
Laboratory Identification Number			6080946-12	6080946-27		6080946-22	6080946-28		6081035-05	6081035-31		6081035-18	6081035-32		6081035-27	6081035-33	

NOTES:

Not analyzed or RPD not calculated. -Concentration is less than the laboratory detection limit indicated. < RDL Laboratory Reportable Detection Limit RPD RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively. RPDs have only been considered where a concentration is greater than 5 times the RDL BOLD

High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Baramatar		RDI	16TP06		RPD (%)	16TP11		DUP02 RPD (%)	16TP16	DUP03		16TP22			16TP27		
Parameter	Unit	RDL	0.7 m	20101	RPD (%)	0.7 m	00102	RPD (%)	0 m	20103	RPD (%)	0.7 m	001 04	RPD (%)	0 m	20103	RPD (%)
			11-Au	g-2016		11-Au	g-2016		12-Au	g-2016		12-Aug	g-2016		12-Au	g-2016	
Herbicides, Pesticides and Fungicides																	
Alachlor	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aldrin	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a-BHC	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a-Chlordane	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Atrazine	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Azinophos methyl	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
b-BHC	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromacil	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoxynil	µg/g	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Captan	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorothalonil	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorpyrifos	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanazine	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d-BHC	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Deltamethrin	µg/g	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diazinon	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichlorvos	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diclofop-methyl	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dieldrin	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dimethoate	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Disulfoton	µg/g	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diuron	µg/g	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan I	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endosulfan sulphate	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin	hð\ð	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin aldehyde	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Endrin ketone	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
g-BHC (Lindane)	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Heptachlor	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Linuron	µg/g	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mathematic	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methodychion	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metribusio	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	μg/g	0.005	-	-	-	-	-	-	-		-	-	-	-	-	-	-
	49/9	0.005		-	-	-	-	-	-		-	-	-	-		-	-
p,p-DDT Parathion	µg/g	0.005	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Partachloronitrobonzono	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Phorate	µg/g	0.005	-	-	-	-	-			-	-	-		-		-	-
Promoton	µg/g	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ronnel (Fenchlornhos)	µg/g	0.01								-							
Simazine	P9/9	0.01		_		_	-	-	_		-		-	-	-	_	
Sulfateon	P9/9	0.01			-	-		-	-		-			-	-	-	
Tebuthiuron	P9/9	0.07		_		_		-	_		-		-	-	-	_	
Temenhos (Abate)	P9/9	0.02			-	-		-			-			-	-	-	
Terhufos	P9/9	0.03	-	_	_	_	-	_	_		-		-	-	-	-	
Triallate	P9/9	0.01			-	-		-			-			-	-	-	
Trifluralin	HA/A	0.000		-			-	-	-		-			_	-	-	
I aboratory Identification Number	P9/9	0.01	6080946-12	6080046-27	-	6080946-22	6080046-28	-	6081035-05	6081035-31	-	6081035-18	6081035-32	-	6081035-27	6081035-33	-
Laboratory Identification Number			0000340-12	0000340-27	1	0000340-22	0000340-20	1	0001033-03	0001030-31		0001033-10	0001000-02		0001030-27	0001030-33	1

NOTES: -

<

Not analyzed or RPD not calculated. Concentration is less than the laboratory detection limit indicated. RDL Laboratory Reportable Detection Limit RPD RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively. RPDs have only been considered where a concentration is greater than 5 times the RDL High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). BOLD High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

			16TP30	DUPOE		16BGR01	DUR07		16TP35-0.7m	DUROS		16TP39-0.7m		
Parameter	Unit	RDL	0.7 m	DOF00	RPD (%)	0 m	DOPU	RPD (%)	0.7 m	DOP08	RPD (%)	0.7 m	DOP09	RPD (%)
			15-Aug	-2016		15-Au	g-2016		15-Au	g-2016		15-Au	g-2016	
Physical Parameters	•					•								
рН	pH Units	0.1	7.7	8.0	4	6.9	6.9	0	8.4	8.2	2	7.8	7.9	1
Moisture	%	0.1	7.5	5.5	31	2.2	2.7	20	2.9	3	3	5.3	4.3	21
Metals														
Antimony	µg/g	0.1	<0.1	<0.1	-	<0.1	0.1	-	0.1	0.1	-	0.2	0.2	-
Arsenic	µg/g	0.4	1.0	0.9	-	1.5	1.9	-	2.1	1.7	-	3.0	2.9	3
Barium	µg/g	1	85	89	5	91	99	8	56	59	5	77	120	44
Beryllium	µg/g	0.1	0.4	0.3	-	0.4	0.5	-	0.3	0.2	-	0.4	0.4	-
Boron	µg/g	2	<2	<2	-	<2	<2	-	<2	<2	-	<2	<2	-
Cadmium	µg/g	0.04	0.09	0.09	-	0.14	0.18	-	0.20	0.18	-	0.18	0.21	-
Chromium	µg/g	1	22.6	22.0	3	17.3	16.4	5	15.2	21.8	36	23.4	25.3	8
Cobalt	µg/g	0.1	10.6	9.3	13	6.3	6.3	0	5.1	5.3	4	6.9	7.5	8
Copper	µg/g	0.2	13.1	10.5	22	12.7	14.1	10	14.0	14.2	1	25.1	23.8	5
Lead	µg/g	0.2	2.2	2.0	10	4.5	5.5	20	2.5	2.7	8	5.2	5.4	4
Lithium	µg/g	0.1	7.1	7.0	1	8.5	9.6	12	9.4	9.7	3	11.8	11.9	1
Manganese	µg/g	0.4	480	436	10	386	392	2	323	303	6	324	346	7
Mercury	µg/g	0.04	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-
Molybdenum	µg/g	0.1	0.9	1.2	29	1.6	0.4	-	0.4	0.3	-	0.7	0.6	15
Nickel	µg/g	0.4	18.1	17.2	5	12.1	13.2	9	13.2	14.4	9	18.8	19.6	4
Selenium	µg/g	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Silver	µg/g	0.2	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-	<0.2	<0.2	-
Strontium	µg/g	0.2	48.7	46.2	5	19.5	27.9	35	29.3	23.5	22	24.1	31.6	27
Thallium	µg/g	0.1	<0.1	<0.1	-	<0.1	0.1	-	<0.1	<0.1	-	0.1	0.1	-
Tin	µg/g	0.2	0.5	0.5	-	0.3	0.4	-	0.3	0.3	-	0.5	0.5	-
Uranium	µg/g	0.1	0.7	2.0	<u>96</u>	0.7	0.9	25	0.4	1.0	-	2.0	0.9	<u>76</u>
Vanadium	µg/g	0.4	45.4	39.8	13	27.9	28.1	1	30.4	33.9	11	39.2	39.2	0
	µg/g	2	52	45	14	46	44	4	35	37	6	45	44	2
Hydrocarbons	· · · · ·	100	400	100					400	100		100	100	
$F2(C_{10}-C_{16})$	µg/g	100	<100	<100	-	-	-	-	<100	<100	-	<100	<100	-
$F2(C_{10}-C_{16})$ -Naprimalene	µg/g	100	<100	<100	-	-	-	-	<100	<100	-	<100	<100	-
$F_{3}(C_{16}-C_{34})$	µg/g	200	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
$F3(C_{16}-C_{34})$ -FAR	µg/g	200	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
Polycyclic Aromatic Hydrocarbons (PAHs)	µg/g	200	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
2-methylnanbthalene	ua/a	0.01	<0.010	~0.010	_	_	_	_	<0.010	<0.010	_	<0.010	<0.010	_
	µg/g	0.01	<0.005	<0.010					<0.010	<0.010		<0.010	0.006	
Acenaphthylene	µg/g	0.005	<0.008	<0.005	-	-	-	-	<0.000	<0.005	_	<0.000	0.000	-
Anthracene	ug/g	0.004	<0.004	<0.004	-	-	-	-	<0.004	<0.004	-	0.007	0.093	-
Benz(a)anthracene	µg/g µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.030	-
Benzo(a)pyrene	ug/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.078	-
Benzo(b)fluoranthene	ug/g	0.01	<0.010	< 0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.119	-
Benzo(a.h.i)pervlene	ua/a	0.02	<0.020	<0.020	-	-	-	-	<0.020	<0.020	-	0.126	1.63	171
Benzo(k)fluoranthene	µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.046	-
Chrysene	µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.057	-
Dibenz(a,h)anthracene	µg/g	0.005	<0.005	< 0.005	-	-	-	-	< 0.005	<0.005	-	< 0.005	0.020	-
Fluoranthene	µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.041	-
Fluorene	μg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	<0.010	-
Indeno(1,2,3-c,d)pyrene	µg/g	0.02	<0.020	<0.020	-	-	-	-	<0.020	<0.020	-	<0.020	0.257	-
Naphthalene	µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	<0.010	-
Phenanthrene	µg/g	0.02	<0.020	<0.020	-	-	-	-	<0.020	<0.020	-	<0.020	<0.020	-
Pyrene	µg/g	0.02	<0.020	<0.020	-	-	-	-	<0.020	<0.020	-	<0.020	0.059	-
BaP TPE	µg/g	0.01	<0.010	<0.010	-	-	-	-	<0.010	<0.010	-	<0.010	0.161	-
IACR	µg/g	0.062	<0.062	<0.062	-	-	-	-	<0.062	<0.062	-	<0.062	1.78	-
Laboratory Identification Number			6081116-10	6081116-29		6081116-03	6081116-30		6081116-20	6081116-31		6081116-28	6081116-32	

NOTES:

Not analyzed or RPD not calculated.

< Concentration is less than the laboratory detection limit indicated.

Laboratory Reportable Detection Limit

RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.

RPDs have only been considered where a concentration is greater than 5 times the RDL

BOLD

RDL

RPD

High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Parameter	Unit		16TP30	DUBOS		16BGR01	DUB07		16TP35-0.7m	DUBOS		16TP39-0.7m	DUB00	
Parameter	Unit	RDL	0.7 m	DUP00	RPD (%)	0 m	DUPU	RPD (%)	0.7 m	DUF00	RPD (%)	0.7 m	DUF09	RPD (%)
			15-Au	g-2016		15-Au	g-2016		15-Au	g-2016		15-Au	g-2016	
Volatile Organic Compounds (VOCs)			•		•				•		•			•
VH ₆₋₁₀	µg/g	20	<20	<20	-	-	-	-	<20	<20	-	<20	<20	-
VPHs	µg/g	20	<20	<20	-	-	-	-	<20	<20	-	<20	<20	-
Benzene	µg/g	0.02	<0.02	<0.02	-	-	-	-	<0.02	<0.02	-	<0.02	<0.02	-
Bromodichloromethane	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Bromoform	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Carbon tetrachloride	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Chlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Chloroform	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Dibromochloromethane	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
1,2-Dibromoethane	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Dibromomethane	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
1,2-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,3-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,4-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1-Dichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,2-Dichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1-Dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
cis-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
trans-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,2-Dichloropropane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Ethylbenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Methylene Chloride	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
МТВЕ	µg/g	0.04	<0.04	<0.04	-	-	-	-	<0.04	<0.04	-	<0.04	<0.04	-
Styrene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Toluene	µg/g	0.2	<0.20	<0.20	-	-	-	-	<0.20	<0.20	-	<0.20	<0.20	-
1,1,1-Trichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
1,1,2-Trichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-	<0.05	<0.05	-	<0.05	<0.05	-
Trichloroethene	µg/g	0.01	<0.01	<0.01	-	-	-	-	<0.01	<0.01	-	<0.01	<0.01	-
Trichlorofluoromethane	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Vinyl chloride	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Xylenes Total	µg/g	0.1	<0.10	<0.10	-	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Laboratory Identification Number			6081116-10	6081116-29		6081116-03	6081116-30		6081116-20	6081116-31		6081116-28	6081116-32	

NOTES:

-	Not analyzed or RPD not calculated.
<	Concentration is less than the laboratory detection limit indicated.
RDL	Laboratory Reportable Detection Limit
RPD	RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.
	RPDs have only been considered where a concentration is greater than 5 times the RDL
BOLD	High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Minis
	High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

PHASE II ESA, CN RAIL LINE ROW MILE 105.9 TO 106.6 AND MILE 107.0 TO 107.5, DUCK LAKE IR 7 FILE: ENV.VENV03191-01 | OCTOBER 2018 | ISSUED FOR REVIEW

stry of Environment Q&A, and BC Environmental Laboratory Manual).

Berometer		PDI	16TP30	DUBOE		16BGR01	DUB07		16TP35-0.7m	DUDOS		16TP39-0.7m	DUB00	
Parameter	Unit	RDL	0.7 m	DUP00	RPD (%)	0 m	DUPU	RPD (%)	0.7 m	DOP08	RPD (%)	0.7 m	DOP09	RPD (%)
			15-Au	g-2016		15-Aug	g-2016		15-Au	g-2016		15-Au	g-2016	
Herbicides, Pesticides and Fungicides		•				•			•			•		
Alachlor	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Aldrin	µg/g	0.005	-	-	-	< 0.005	<0.005	-	-	-	-	-	-	-
a-BHC	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
a-Chlordane	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Atrazine	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Azinophos methyl	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
b-BHC	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Bromacil	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Bromoxynil	µg/g	0.02	-	-	-	<0.020	<0.020	-	-	-	-	-	-	-
Captan	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Chlorothalonil	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Chlorpyrifos	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Cyanazine	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
d-BHC	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Deltamethrin	µg/g	0.05	-	-	-	<0.050	<0.050	-	-	-	-	-	-	-
Diazinon	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Dichlorvos	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Diclofop-methyl	µg/g	0.005	-	-	-	<0.005	< 0.005	-	-	-	-	-	-	-
Dieldrin	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Dimethoate	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Disulfoton	µg/g	0.02	-	-	-	<0.020	<0.020	-	-	-	-	-	-	-
Diuron	µg/g	0.02	-	-	-	<0.020	<0.020	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	< 0.005	<0.005	-	-	-	-	-	-	-
Endosultan sulphate	µg/g	0.005	-	-	-	< 0.005	<0.005	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	< 0.005	<0.005	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
g-BHC (Lindane)	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
g-Chioldane	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Heptachlor	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Linuion	µg/g	0.02	-	-	-	<0.020	<0.020	-	-	-	-	-	-	-
Mathematic	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Methyl parathion	µg/g	0.005	-	-		<0.003	<0.003	-	-		-			
Metalachlor	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Metribuzin	µg/g	0.01				<0.010	<0.010							
	µg/g	0.01				<0.010	<0.010		_					
p.pDDE	μg/g	0.005	-			<0.005	<0.005	-						
p,p DDL	μg/g	0.005	-	-		<0.005	<0.005	-	-	-	-	-		
Parathion	μg/g	0.000	-	_	-	<0.000	<0.000	-	-	-	_	-	-	-
Pentachloronitrobenzene	µg/g	0.005	-	-	-	<0.005	<0.005	-	-	-	-	<u> </u>	-	-
Phorate	μg/g	0.01	-	-	-	<0.000	<0.000	-	-	-	-	-	-	-
Prometon	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Ronnel (Fenchlorphos)	μg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Simazine	µg/g	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Sulfotepp	µa/a	0,01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Tebuthiuron	hu/u	0.02	-	-	-	<0.020	<0.020	-	-	-	-	-	-	-
Temephos (Abate)	µa/a	0.05	-	-	-	<0.050	<0.050	-	-	-	-	-	-	-
Terbufos	hu/u	0.01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Triallate	µa/a	0.005	-	-	-	<0.005	<0.005	-	-	-	-	-	-	-
Trifluralin	ua/a	0,01	-	-	-	<0.010	<0.010	-	-	-	-	-	-	-
Laboratory Identification Number	I F 3' 3	1	6081116-10	6081116-29		6081116-03	6081116-30		6081116-20	6081116-31		6081116-28	6081116-32	
-														

1	NO	ΓE	s
		-	

Not analyzed or RPD not calculated.

Concentration is less than the laboratory detection limit indicated.

Laboratory Reportable Detection Limit

RDL RPD

<

RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.

RPDs have only been considered where a concentration is greater than 5 times the RDL

BOLD

High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Parameter Unit	CCME - it Residential/					16TP02E1 SA#1	16TP02E1 SA#2	16TP02E2 SA#1	16TP02E2 SA#2	16TP02W ⁻	I SA#1	16TP02W1 SA#2	
Parameter	Unit	CCME - Bosidontial/	CCME -				0.15 m	0.4	0.15 m	0.4 m	0.15 m	0.15 m	0.4 m
Farameter	Onit	Parkland	Commercial	COK-PL	COK - KL	CSR-CL	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2	017	5/29/2017
							16TP02E1 SA#1 D=0.15m	16TP02E1 SA#2 D=0.4m	16TP02E2 SA#1 D=0.15m	16TP02E2 SA#2 D=0.4m	16TP02W1 SA#1 D=0.15m	DUP #1	16TP02W1 SA#2 D=0.4m
Physical Parameters													
Moisture	%	-	-	-	-	-	6.6	15.2	13.7	12.7	3.1	3.8	16.2
Hydrocarbons				-	-	-							
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbons	s (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.006	<0.005	<0.005	<0.005	0.013	0.014	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.018	<0.004	<0.004	<0.004	0.039	0.04	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.011	<0.01	<0.01	<0.01	0.033	0.036	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.019	<0.01	<0.01	<0.01	0.052	0.079	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.075	<0.01	<0.01	<0.01	0.131	0.146	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.059	<0.02	<0.02	<0.02	0.129	0.151	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.021	<0.01	<0.01	<0.01	0.053	0.063	<0.01
Chrysene	µg/g	-	-	-	-	-	0.031	<0.01	<0.01	<0.01	0.071	0.065	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.005	<0.005	<0.005	<0.005	0.012	0.015	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.026	<0.01	<0.01	<0.01	0.064	0.049	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.027	<0.02	<0.02	<0.02	0.062	0.083	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.026	<0.02	<0.02	<0.02	0.067	0.055	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.0412	<0.01	<0.01	<0.01	0.0986	0.135	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.1236	0.03	0.03	0.03	0.2958	0.405	0.03
IACR (CCME)	µg/g	1	1	-	-	-	0.905	<0.0625	<0.0625	<0.0625	1.86	2.16	<0.0625
Laboratory Identification Number							7052353_7052353-05	7052353_7052353-06	7052353_7052353-01	7052353_7052353-02	7052353_7052353-13	7052353_7052353-41	7052353_7052353-14
NOTES: #1 CS	R Schedule 5	Substance.											

Not analyzed or no guideline/standard exists. -< Concentration is less than the laboratory detection limit indicated. As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed. B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations IACR of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed.

 PL
 Park Land Standards

 RL
 Residential Land Standards

 CL
 Commercial Land Standards

 Site specific factors include:
 - Intake of contaminated soil.

 - Toxicity to soil invertebrates and plants.
 - Groundwater used for drinking water.

 - Groundwater flow to surface water used by freshwater aquatic life.
 Most stringent applicable site specific standard is shown.

 Bold
 Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP02W2 SA#1	16TP02W2 SA#2	16TP04E1 SA#1	16TP04E1 SA#2	16TP04E2 SA#1	16TP04E2 SA#2
Parameter	Unit	CCME -	CCME -		CSB BI	CER CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	Unit	Parkland	Commercial	COR - FL	CSK-KL	CSR-CL	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017
							16TP02W2 SA#1 D=0.15m	16TP02W2 SA#2 D=0.4m	16TP04E1 SA#1 D=0.15m	16TP04E1 SA#2 D=0.4m	16TP04E2 SA#1 D=0.15m	16TP04E2 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	13	10.8	5.1	6.3	2.3	2.5
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarb	ons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	<0.004	<0.004	0.011	<0.004	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 #1	10 ^{#1}	<0.01	<0.01	0.011	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.014	<0.01	0.032	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	<0.02	<0.02	0.021	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	<0.01	<0.01	0.011	<0.01	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	<0.01	<0.01	0.018	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.01	<0.01	0.015	<0.01	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	<0.01	<0.01	0.0167	<0.01	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.03	0.03	0.0501	0.03	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	0.0905	<0.0625	0.384	<0.0625	<0.0625	<0.0625
Laboratory Identification Numb	er						7052353_7052353-09	7052353_7052353-10	7052353_7052353-21	7052353_7052353-22	7052353_7052353-17	7052353_7052353-18
NOTES: #1 - < *	CSR Schedule 5 Not analyzed or n Concentration is le As the site has the factor of three as	Substance. o guideline/standard ess than the laborato e potential of soil con per CCME guidance	exists. ry detection limit ind taminated by creoso (2010).	licated. ote the calculated B	(a)P TPE was multi	plied by a safety						

	factor of three as per CCME guidance (2010).
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CSR	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
B[a]P TPE	Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed.
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil guality guideline listed.
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	_Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP04W1 SA#1	16TP04W1 SA#2	16TP04W2 SA#1	16TP04W2 SA#2	16TP14E1SA#1	16TP14E1SA#2
Parameter	Unit	CCME - Residential/	CCME -				0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	Onic	Parkland	Commercial	CONTE	COR - RE	CON-CE	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/30/2017	5/30/2017
							16TP04W1 SA#1 D=0.15m	16TP04W1 SA#2 D=0.4m	16TP04W2 SA#1 D=0.15m	16TP04W2 SA#2 D=0.4m	16TP14E1SA#1 D=0.15m	16TP14E1SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	4.1	4.4	9.3	4	3	13.2
Hydrocarbons				-	-	-						
F2 (C10-C16)	hð\ð	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	hð\ð	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200
F3-PAH	hð\ð	-	-	-	-	-	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	hð\ð	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbo	ons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	0.009	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	<0.005	<0.005	<0.005	<0.005	0.034	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.017	<0.004	<0.004	<0.004	0.101	0.005
Benz(a)anthracene	µg/g	1	10	1	1	10	0.012	<0.01	<0.01	<0.01	0.051	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.022	<0.01	<0.01	<0.01	0.124	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.056	<0.01	<0.01	<0.01	0.295	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.046	<0.02	<0.02	<0.02	0.668	0.027
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.02	<0.01	<0.01	<0.01	0.127	<0.01
Chrysene	µg/g	-	-	-	-	-	0.029	<0.01	<0.01	<0.01	0.142	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	<0.005	<0.005	<0.005	<0.005	0.04	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.024	<0.01	<0.01	<0.01	0.209	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.026	<0.02	<0.02	<0.02	0.265	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	0.046	<0.02
Pyrene	µg/g	10	100	10	10	100	0.021	<0.02	<0.02	<0.02	0.187	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.0366	<0.01	<0.01	<0.01	0.246	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.1098	0.03	0.03	0.03	0.738	0.03
IACR (CCME)	µg/g	1	1	-	-	-	0.742	<0.0625	<0.0625	<0.0625	3.56	<0.0625
Laboratory Identification Numb	er						7052353_7052353-29	7052353_7052353-30	7052353_7052353-25	7052353_7052353-26	7052560_7052560-13	7052560_7052560-14
NOTES: #1	CSR Schedule 5 Not analyzed or n Concentration is le	Substance. o guideline/standard	exists.	icated	·	·		<u>.</u>		<u>.</u>		<u>.</u>

As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety * factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed. B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). IACR Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. PL Park Land Standards Residential Land Standards RL CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP14E2SA#1	16TP14E2SA#2	16TP14W1	SA#1	16TP14W1SA#2	16TP14W2SA#1	16TP14W2SA#2
Peromotor	Unit	CCME - Bosidential/	CCME -	CSB BI			0.15 m	0.4 m	0.15 m		0.4 m	0.15 m	0.4 m
Parameter	Unit	Parkland	Commercial	CSR-PL	CSK - KL	CSR-CL	5/30/2017	5/30/2017	5/30/20	17	5/30/2017	5/30/2017	5/30/2017
		. a nana					16TP14E2SA#1 D=0.15m	16TP14E2SA#2 D=0.4m	16TP14W1SA#1 D=0.15m	DUP #3	16TP14W1SA#2 D=0.4m	16TP14W2SA#1 D=0.15m	16TP14W2SA#2 D=0.4m
Physical Parameters													
Moisture	%	-	-	-	-	-	8.1	9	3	1.5	7.3	10.1	2.7
Hydrocarbons				-	-	-							
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200	<200
F3-PAH	hð\ð	-	-	-	-	-	<200	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	hð\ð	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbo	ons (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	<0.005	<0.005	0.027	0.028	0.012	<0.005	<0.005
Anthracene	hð\ð	2.5	32	-	-	-	<0.004	<0.004	0.079	0.072	0.044	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	<0.01	<0.01	0.024	0.026	0.012	<0.01	<0.01
Benzo(a)pyrene	hð\ð	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	<0.01	<0.01	0.069	0.087	0.036	<0.01	<0.01
Benzo(b)fluoranthene	hð\ð	1	10	1	1	10	<0.01	<0.01	0.214	0.237	0.109	0.019	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	<0.02	<0.02	0.504	0.427	0.189	<0.02	<0.02
Benzo(k)fluoranthene	hð\ð	1	10	1	1	10	<0.01	<0.01	0.086	0.094	0.041	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	<0.01	<0.01	0.084	0.077	0.042	0.01	<0.01
Dibenz(a,h)anthracene	hð\ð	1	10	1	1	10	<0.005	<0.005	0.028	0.026	0.013	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	<0.01	<0.01	0.105	0.084	0.041	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg∕g	1	10	1	1	10	<0.02	<0.02	0.186	0.171	0.086	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	0.027	0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	<0.02	<0.02	0.099	0.085	0.04	<0.02	<0.02
B(a)P Total Potency Equivalent	µg∕g	5.3	5.3	-	-	-	<0.01	<0.01	0.154	0.181	0.0761	<0.01	<0.01
B[a]P TPE multiplied by 3*	hð/ð	5.3	5.3				0.03	0.03	0.462	0.543	0.2283	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	<0.0625	<0.0625	2.44	3.26	1.21	0.121	<0.0625
Laboratory Identification Number	er						7052560_7052560-21	7052560_7052560-22	7052560_7052560-17	7052560_7052560-73	7052560_7052560-18	7052560_7052560-01	7052560_7052560-02
NOTES: #1 - <	CSR Schedule 5 Not analyzed or n Concentration is I	Substance. no guideline/standard less than the laborato	exists. ry detection limit ind	icated.									

* As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations IACR of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. ΡL Park Land Standards Residential Land Standards RL CL Commercial Land Standards - Intake of contaminated soil. Site specific factors include: - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Parameter	Unit	CCME -	CCME -	CEP PI	CED DI	CSB CI	16TP14N1 SA#1 16TP14N1 SA#2		16TP14S1 SA#1	16TP14S1 SA#2	16TP16E1SA#1	16TP16E1SA#2	
							0.15 m 0.4 m		0.15 m	0.4 m	0.15	0.4 m	
Farameter	Offic	Parkland	Commercial	CSK-FL	CSK - KL	CSR - CL	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/30/2017	5/30/2017
							16TP14N1 SA#1 D=0.15m	16TP14N1 SA#2 D=0.4m	DUP #2	16TP14S1 SA#1 D=0.15m	16TP14S1 SA#2 D=0.4m	16TP16E1SA#1 D=0.15m	16TP16E1SA#2 D=0.4m
Physical Parameters													
Moisture	%	-	-	-	-	-	2.8	10.1	6	3.3	5.4	2.8	8
Hydrocarbons				-	-	-							
F2 (C10-C16)	hð/ð	150	260	-	-	-	<100	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	398	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	396	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbo	ons (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	hð/ð	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	hð/ð	320	320	-	-	-	0.056	<0.005	<0.005	0.121	<0.005	<0.005	<0.005
Anthracene	hð/ð	2.5	32	-	-	-	0.154	<0.004	<0.004	0.273	0.009	0.019	<0.004
Benz(a)anthracene	hð/ð	1	10	1	1	10	0.071	<0.01	<0.01	0.117	<0.01	0.01	<0.01
Benzo(a)pyrene	hð/ð	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.278	<0.01	<0.01	0.278	<0.01	0.021	<0.01
Benzo(b)fluoranthene	hð/ð	1	10	1	1	10	0.36	<0.01	<0.01	0.427	<0.01	0.059	<0.01
Benzo(g,h,i)perylene	hð/ð	-	-	-	-	-	1.9	<0.02	<0.02	1.78	<0.02	0.047	<0.02
Benzo(k)fluoranthene	hð/ð	1	10	1	1	10	0.167	<0.01	<0.01	0.186	<0.01	0.021	<0.01
Chrysene	hð/ð	-	-	-	-	-	0.116	<0.01	<0.01	0.164	<0.01	0.033	<0.01
Dibenz(a,h)anthracene	hð/ð	1	10	1	1	10	0.074	<0.005	<0.005	0.092	<0.005	<0.005	<0.005
Fluoranthene	hð/ð	50	180	-	-	-	0.084	<0.01	<0.01	0.255	<0.01	0.027	<0.01
Fluorene	hð/ð	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	hð/ð	1	10	1	1	10	0.539	<0.02	<0.02	0.556	<0.02	0.026	<0.02
Naphthalene	hð/ð	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	hð/ð	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	0.043	<0.02	<0.02	<0.02
Pyrene	hð/ð	10	100	10	10	100	0.101	<0.02	<0.02	0.304	<0.02	0.026	<0.02
B(a)P Total Potency Equivalent	hð/ð	5.3	5.3	-	-	-	0.501	<0.01	<0.01	0.536	<0.01	0.0354	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				1.503	0.03	0.03	1.608	0.03	0.1062	0.03
IACR (CCME)	hð/ð	1	1	-	-	-	6.08	<0.0625	<0.0625	6.97	<0.0625	0.77	<0.0625
Laboratory Identification Number	er						7052353_7052353-33	7052353_7052353-34	7052353_7052353-42	7052353_7052353-37	7052353_7052353-38	7052560_7052560-09	7052560_7052560-10
NOTES: #1 - < * CCME	CSR Schedule 5 S Not analyzed or no Concentration is le As the site has the factor of three as p Canadian Council	ubstance. guideline/standard ss than the laborato potential of soil con er CCME guidance of Ministers of the El	exists. ry detection limit indi taminated by creoso (2010). nvironment (CCME)	cated. te the calculated B (Updated 2015). So	(a)P TPE was multip oil Quality Guideline:	lied by a safety s for the Protection					<u>.</u>		

of Enviro nental and Human Health, for coarse soils under Residential/Parkland and Co ercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g B[a]P TPE =)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). IACR Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. PL Park Land Standards Residential Land Standards RL CL Commercial Land Standards - Intake of contaminated soil. Site specific factors include: - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

16TP16E2SA#1 16TP16E2SA#2 16TP16N1SA#1 16TP16N1SA#2 CCME -0.15 m CCME -0.4 m 0.15 m 0.4 m CSR - RL Unit Residential/ CSR - PL CSR - CL Parameter Commercial 5/30/2017 5/30/2017 5/30/2017 5/30/2017 Parkland 16TP16E2SA#2 D=0.4m 16TP16E2SA#1 D=0.15m 16TP16N1SA#1 D=0.15m 16TP16N1SA#2 D=0.4m Physical Parameters 3 2.6 2.8 1.9 % Moisture -Hvdrocarbons F2 (C10-C16) µg/g 150 260 <100 <100 <100 <100 F2-NAPHTHALENE µg/g <100 <100 <100 <100 F3 (C16-C34) µg/g 300 1700 <200 <200 629 639 ---F3-PAH µg/g <200 <200 629 639 -----F4 (C34-C50) 3300 <200 <200 <200 µg/g 2800 ---<200 Reached Baseline at C50 N/A --YES YES YES YES ---Polycyclic Aromatic Hydrocarbons (PAHs) -methylnaphthalene µg/g <0.01 < 0.01 <0.01 <0.01 -_ _ _ < 0.005 < 0.005 Acenaphthene µg/g 0.28 0.28 < 0.005 < 0.005 ---< 0.005 < 0.005 < 0.005 Acenaphthylene <0.005 µg/g 320 320 < 0.004 < 0.004 0.013 < 0.004 Anthracene µg/g 2.5 32 Benz(a)anthracene <0.01 <0.01 <0.01 <0.01 µg/g 10 10 1 1 Benzo(a)pyrene µg/g 72 1 ^{#1} 1 #1 10 #1 <0.01 <0.01 < 0.01 <0.01 20 Benzo(b)fluoranthene 0.021 < 0.01 0.015 < 0.01 µg/g 10 10 1 1 1 0.027 < 0.02 < 0.02 < 0.02 Benzo(a.h.i)pervlene µg/g --< 0.01 < 0.01 < 0.01 Benzo(k)fluoranthene < 0.01 µg/g 10 10 1 1 1 <0.01 < 0.01 Chrysene <0.01 <0.01 µg/g Dibenz(a,h)anthracene < 0.005 < 0.005 < 0.005 < 0.005 µg/g 10 1 1 10 1 Fluoranthene 50 180 <0.01 < 0.01 <0.01 <0.01 µg/g --Fluorene < 0.01 < 0.01 < 0.01 < 0.01 µg/g 0.25 0.25 -Indeno(1,2,3-c,d)pyrene < 0.02 < 0.02 < 0.02 < 0.02 µg/g 10 1 1 10 Naphthalene µg/g 0.013 0.013 5 50 < 0.01 < 0.01 < 0.01 < 0.01 5 Phenanthrene µg/g 0.046 0.046 50 <0.02 < 0.02 < 0.02 <0.02 5 5 < 0.02 < 0.02 < 0.02 < 0.02 Pyrene µg/g 10 100 10 10 100 B(a)P Total Potency Equivalent 5.3 5.3 < 0.01 < 0.01 < 0.01 < 0.01 µg/g ---5.3 0.03 0.03 0.03 0.03 53 B[a]P TPE multiplied by 3* µg/g IACR (CCME) 0.132 <0.0625 0.0949 <0.0625 µg/g 1 1 ---Laboratory Identification Number 7052560_7052560-05 7052560_7052560-06 7052560_7052560-33 7052560_7052560-34 NOTES:

Table 1: Soil Analytical Results - Hydrocarbons and Polycyclic Aromatic Hydrocarbons

#1 CSR Schedule 5 Substance. Not analyzed or no guideline/standard exists. Concentration is less than the laboratory detection limit indicated. As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -CSR Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations IACR of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. ΡL Park Land Standards Residential Land Standards RL CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

16TP16S1SA#1	16TP16S1SA#2	16TP16W1SA#1			
0.15 m	0.4 m	0.15 m			
5/30/2017	5/30/2017	5/30/2017			
16TP16S1SA#1 D=0.15m	16TP16S1SA#2 D=0.4m	16TP16W1SA#1 D=0.15m			
2.5	5.7	1.6			
<100	<100	<100			
<100	<100	<100			
249	<200	<200			
245	<200	<200			
<200	<200	<200			
YES	YES	YES			
0.013	<0.01	<0.01			
0.009	<0.005	<0.005			
0.148	0.009	<0.005			
0.474	0.035	0.017			
0.129	<0.01	<0.01			
0.389	0.013	0.015			
0.726	0.022	0.044			
5.45	0.077	0.047			
0.298	<0.01	0.015			
0.245	<0.01	0.018			
0.177	<0.005	<0.005			
0.308	<0.01	0.02			
0.011	<0.01	<0.01			
0.919	0.021	0.026			
0.021	<0.01	<0.01			
0.064	<0.02	<0.02			
0.365	<0.02	<0.02			
0.83	0.0176	0.0265			
2.49	0.0528	0.0795			
9.87	0.19	0.557			
7052560_7052560-37	7052560_7052560-38	7052560_7052560-29			

Parameter				CSP PI	CSD DI		16TP16W1SA#2	16TP16W2SA#1	16TP16W2SA#2	16TP17E1SA#1	16TP17E2SA#1	16TP17W1SA#1	16TP17W2SA#1
	Unit	CCME - Bosidential/	CCME -				0.4 m	0.15 m	0.4 m	0.15 m	0.15 m	0.15 m	0.15 m
Farameter	Onic	Parkland	Commercial	COK-FL	COK - KL	COR-CL	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017
							16TP16W1SA#2 D=0.4m	16TP16W2SA#1 D=0.15m	16TP16W2SA#2 D=0.4m	16TP17E1SA#1 D=0.15m	16TP17E2SA#1 D=0.15m	16TP17W1SA#1 D=0.15m	16TP17W2SA#1 D=0.15m
Physical Parameters													
Moisture	%	-	-	-	-	-	6.7	4.6	9.3	1.6	3.9	1.8	4.2
Hydrocarbons				-	-	-							
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	-	-	-	-
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	-	-	-	-
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	-	-	-	-
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	-	-	-	-
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	-	-	-	-
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	-	-	-	-
Polycyclic Aromatic Hydrocark	ons (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	<0.005	<0.005	<0.005	0.007	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.005	<0.004	<0.004	0.028	0.006	0.01	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	<0.01	<0.01	<0.01	0.013	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 #1	1 #1	10 ^{#1}	<0.01	<0.01	<0.01	0.033	0.012	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.017	<0.01	<0.01	0.091	0.028	0.033	0.011
Benzo(g,h,i)perylene	ha/a	_	-	-	-	-	<0.02	<0.02	<0.02	0.09	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	ha/a	1	10	1	1	10	<0.01	<0.01	<0.01	0.032	<0.01	<0.01	<0.01
Chrysene	ua/a	_	-	_	-	-	<0.01	<0.01	<0.01	0.035	0.014	0.014	<0.01
Dibenz(a,h)anthracene	µa/a	1	10	1	1	10	<0.005	<0.005	<0.005	0.008	<0.005	<0.005	<0.005
Fluoranthene	ug/g	50	180	-	-	-	<0.01	<0.01	<0.01	0.032	0.016	0.013	0.022
Fluorene	µg/g	0.25	0.25	_	_	_	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1 2 3-c d)pyrene	µg/g	0.20	10	1	1	10	<0.02	<0.02	<0.02	0.044	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.012	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.015	0.015	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	0.040	0.040	10	10	100	<0.02	<0.02	<0.02	0.032	<0.02	<0.02	<0.02
R(a)P Total Potency Equivalent	μg/g	10	53	10	10	100	<0.02	<0.02	<0.02	0.032	0.0244	0.02	0.0204
	µg/g	5.3	5.5	-	-	-	0.03	0.03	0.03	0.0603	0.0241	0.0226	0.0204
B[a]P TPE multiplied by 3 [°]	µg/g	5.5	5.5				0.03	0.05	0.03	0.181	0.072	0.000	0.061
	µg/g	1	1	-	-	-	7050500 7050500 00	<0.0025	<0.0023	0.9785		0.3048	<0.0023
Laboratory Identification Num	ber						7052560_7052560-30	7052560_7052560-25	7052560_7052560-26	7052560_7052560-53	7052560_7052560-49	7052560_7052560-45	7052560_7052560-41
#1 - < * CCME	CSR Schedule 5 S Not analyzed or no Concentration is le As the site has the factor of three as p Canadian Council	Substance. 9 guideline/standard 9 ss than the laborato 9 potential of soil con 9 or CCME guidance 9 Ministers of the E	exists. ry detection limit inc taminated by creoso (2010). nvironment (CCME)	licated. ote the calculated B) (Updated 2015). So	(a)P TPE was multij oil Quality Guideline	plied by a safety s for the Protection							
CSR B[a]P TPE	of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10). Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE												
B[a]P TPE = IACR PL RL CI	benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g) perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. Park Land Standards Residential Land Standards												
Site specific factors include:	Jommercial Land Standards - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water.												

Groundwater used for dimining water.
 Groundwater flow to surface water used by freshwater aquatic life.
 Most stringent applicable site specific standard is shown.
 Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Parameter	Unit		CCME -			CSR - CL	16TP22E1SA#1 16TP22E2SA#1		16TP22W1SA#1		16TP22W2SA#1	16TP28E1 SA#1	16TP28E1 SA#2
		CCME -		000 01			0.15 m	0.15 m	0.15 m		0.15 m	0.15 m	0.4 m
		Parkland	Commercial	CSK-PL	CSK - KL		5/30/2017	5/30/2017	5/30/201	7	5/30/2017	5/31/2017	5/31/2017
							16TP22E1SA#1 D=0.15m	16TP22E2SA#1 D=0.15m	16TP22W1SA#1 D=0.15m	DUP #4	16TP22W2SA#1 D=0.15m	16TP28E1 SA#1 D=0.15m	16TP28E1 SA#2 D=0.4m
Physical Parameters													
Moisture	%	-	-	-	-	-	0.8	2.6	1.4	2.2	5.9	1.8	4.1
Hydrocarbons		150	000	-	-	-						400	400
	µg/g	150	260	-	-	-	-	-	-	-	-	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	-	-	-	-	-	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	-	-	-	-	•	<200	<200
F3-PAH	µg/g	-		-	-	-	-	-	-	-	-	<200	<200
F4 (C34-C30)	µg/g	2000	3300	-	-	-	-		-	-	•	<200	<200 VES
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	-		-	-	-	123	123
2-methylnanhthalene							0.012	<0.01	<0.01	<0.01	<0.01	<0.01	~0.01
	μg/g	-	-	-	-	-	<0.012	<0.01	<0.01	<0.01	<0.005	<0.01	<0.01
	μg/g	0.20	0.20	-	-	-	0.032	<0.005	0.021	0.024	<0.005	<0.005	<0.005
Anthracene	μg/g	320	320	-	-	-	0.098	<0.003	0.021	0.024	<0.003	<0.003	<0.000
Benz(a)anthracene	μg/g	2.5	32 10	-	-	- 10	0.056	<0.01	0.073	0.000	<0.004	<0.004	<0.004
Benzo(a)pyrene	μg/g	20	72	۱ ۲	, #1	10 #1	0.128	<0.01	0.094	0.00	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	20	10	1	1	10	0.302	<0.01	0.22	0.215	<0.01	<0.01	<0.01
Benzo(g h i)pervlene	µg/g	-	10	-	-	10	0.452	<0.02	0.263	0.295	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.13	<0.01	0.094	0.092	<0.01	<0.01	<0.01
Chrysene	µa/a	-	-	-	-	-	0.142	<0.01	0.129	0.123	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	µq/q	1	10	1	1	10	0.032	<0.005	0.02	0.019	<0.005	<0.005	<0.005
Fluoranthene	µq/q	50	180	-	-	-	0.168	<0.01	0.14	0.101	<0.01	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.208	<0.02	0.118	0.117	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.04	<0.02	0.026	0.022	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.166	<0.02	0.149	0.149	<0.02	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.2355	<0.01	0.1683	0.1746	<0.01	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.707	0.03	0.505	0.524	0.03	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	3.57	<0.0625	2.67	2.66	<0.0625	<0.0625	<0.0625
Laboratory Identification Num	ber						7052560_7052560-61	7052560_7052560-57	7052560_7052560-69	7052560_7052560-74	7052560_7052560-65	7060116_7060116-17	7060116_7060116-18
NOTES:		•								· ·		·	
#1	CSR Schedule 5 S	Substance.	oviete										
-	Concentration is le	ss than the laborato	rv detection limit ind	cated									
*	As the site has the	potential of soil con	taminated by creoso	te the calculated B(a)P TPE was multip	lied by a safety							
	factor of three as p	per CCME guidance	(2010).										
CCME	Canadian Council	of Ministers of the E	nvironment (CCME)	(Updated 2015). So	oil Quality Guideline	s for the Protection							
	of Environmental a	and Human Health, f	or coarse soils unde	r Residential/Parkla	nd and Commercial	land use.							
	Canadian Council	of Ministers of the E	nvironment (CCME)	(2008). Canada-Wi	de Standards for Pe	etroleum							
000	Hydrocarbons (PH	Cs) in Soil, for coars	se soils under Reside	ential/Parkland and	Commercial land us	Se.							
CSR	Schedules 4 5 and	d 10)	- Reg. 375/96, Inclu	ues amenuments up	0 10 B.C. Reg. 184/2	2016, July 19, 2016	-						
B[a]P TPE	Benzo[a]Pyrene (E	B[a]P) Total Potency	Equivalent (TPE) re	ative to benzo(a)py	rene which is detern	nined by adding the	9						
	products of the me	easured concentratio	ns of each listed PA	H in the CCME PAF	1 2010 guideline mu	Itiplied by the TPE							
BIAD THE -	listed.	ne)(0 1)+(benzo(a)n	vrene)(1 0)+(benzo(l)fluoranthene)(0.1)	+(benzo(k)fluoranth	ene)(0.1) + (Benzo(c))							
)perylene)(0.01)+(chrysene)(0.01)+(dib	penz(a,h)anthracene	(1)+(indeno(1,2,3-c	d)pyrene)(0.1).		3						
IACR	Calculated risk of	Index of additive Car	ncer Risk (IACR) wh	ch is determined by	adding the measur	ed concentrations							
וס	of each listed PAH	I in the CCME PAH 2	2010 guideline divide	ed by the soil quality	guideline listed.								
PL RI	Residential Land Standa	ius Standards											
CL	Commercial Land	Standards											
Site specific factors include:	- Intake of contami	inated soil.											
	- Toxicity to soil inv	vertebrates and plan	ts.										
	- Groundwater use	ed for drinking water.											
	- Groundwater flov	v to surface water us	ed by freshwater aq	uatic life.									
Bold	Bold and shaded in	ndicates an exceeda	ince of the CCME gu	ideline or CSR star	ndard								\square

		CCME -					16TP28E2 SA#1	16TP28E2 SA#2	16TP28N1 SA#1	16TP28N1 SA#2	16TP28S1 SA#1	16TP28S1 SA#2
Parameter	Unit	CCME -	CCME -		CED DI		0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	onit	Parkland	Commercial	CSK-FL	COR - RL	CSR-CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
		. and					16TP28E2 SA#1 D=0.15m	16TP28E2 SA#2 D=0.4m	16TP28N1 SA#1 D=0.15m	16TP28N1 SA#2 D=0.4m	16TP28S1 SA#1 D=0.15m	16TP28S1 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	3.2	4.9	2.5	5	3.7	5.4
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbor	s (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg∕g	20	72	1 ^{#1}	1 ^{#1}	10 #1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg∕g	1	10	1	1	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.03	0.03	0.03	0.03	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	<0.0625	<0.0625	<0.0625	<0.0625	<0.0625	<0.0625
Laboratory Identification Number							7060116_7060116-13	7060116_7060116-14	7060116_7060116-01	7060116_7060116-02	7060116_7060116-05	7060116_7060116-06
NOTES: #1 C - N < C * A	SR Schedule 5 ot analyzed or n oncentration is l s the site has the	Substance. o guideline/standard ess than the laborato e potential of soil con	exists. ry detection limit indi taminated by creosol	cated. se the calculated B	(a)P TPE was multip	blied by a safety						

*	As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010).
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CSR	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
B[a]P TPE	Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed.
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed.
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Decementer							16TP28W1 SA#1	16TP28W1 SA#2	16TP30E1 SA#1	16TP30E1 SA#2	16TP30E2 SA#1	16TP30E2 SA#2
Parameter	Unit	CCME - Residential/	CCME -		CSP - PI		0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	Onic	Parkland	Commercial	CONTE	CORTINE	CON-CE	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP28W1 SA#1 D=0.15m	16TP28W1 SA#2 D=0.4m	16TP30E1 SA#1 D=0.15m	16TP30E1 SA#2 D=0.4m	16TP30E2 SA#1 D=0.15m	16TP30E2 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	3.8	2.2	5.1	8.5	28.7	14.6
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	hð\ð	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C_{50}	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocar	bons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.019	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.079	<0.004	<0.004	<0.004	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.045	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.092	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.177	<0.01	<0.01	<0.01	0.011	0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.59	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.076	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.078	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.026	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.064	<0.01	<0.01	<0.01	0.01	0.011
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.124	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.071	<0.02	<0.02	<0.02	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.166	<0.01	<0.01	<0.01	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.498	0.03	0.03	0.03	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	2.25	<0.0625	<0.0625	<0.0625	0.0711	0.063
Laboratory Identification Num	ber						7060116_7060116-09	7060116_7060116-10	7060116_7060116-37	7060116_7060116-38	7060116_7060116-33	7060116_7060116-34
NOTES: #1 - - * * CCME	CSR Schedule 5 Not analyzed or n Concentration is le As the site has the factor of three as Canadian Council of Environmental	Substance. o guideline/standard ess than the laborato e potential of soil con per CCME guidance of Ministers of the E	exists. ry detection limit ind taminated by creosc (2010). nvironment (CCME)	icated. te the calculated B((Updated 2015). So	a)P TPE was multip bil Quality Guideline	blied by a safety s for the Protection		·				

*	As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010).
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CSR	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 Schedules 4, 5 and 10).
B[a]P TPE	Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed.
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed.
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		CCME -					16TP30S1 SA#1	16TP30S1	SA#2	16TP30W1 SA#1	16TP30W1 SA#2	16TP30W2 SA#1	16TP30W2 SA#2
Baramatar	Unit	CCME -	CCME -	CSD DI	CSD DI	CSB CI	0.15 m	0.4 m		0.15 m	0.4 m	0.15 m	0.4 m
Parameter	Unit	Parkland	Commercial	CSR-PL	CSR - RL	CSR-CL	5/31/2017	5/31/20	17	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP30S1 SA#1 D=0.15m	16TP30S1 SA#2 D=0.4m	Dupe #5	16TP30W1 SA#1 D=0.15m	16TP30W1 SA#2 D=0.4m	16TP30W2 SA#1 D=0.15m	16TP30W2 SA#2 D=0.4m
Physical Parameters													
Moisture	%	-	-	-	-	-	7.1	4.1	5.6	5.1	4.5	16.6	20.6
Hydrocarbons				-	-	-							
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200	<200
F3-PAH	hð\ð	-	-	-	-	-	<200	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	hð\ð	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbons	s (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	0.022	<0.01	0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	0.006	<0.005	0.007	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.476	<0.005	<0.005	0.021	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.864	0.005	0.004	0.057	0.027	0.009	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.244	<0.01	<0.01	0.023	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.53	<0.01	<0.01	0.037	0.015	0.012	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.59	<0.01	<0.01	0.098	0.031	0.029	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	1.02	0.038	<0.02	0.132	0.059	<0.02	<0.021
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.257	<0.01	<0.01	0.039	0.013	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.233	<0.01	<0.01	0.052	0.018	0.017	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.132	0.028	<0.005	0.01	<0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.344	<0.01	<0.01	0.062	0.022	0.023	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.586	0.028	<0.02	0.056	0.024	<0.02	<0.021
Naphthalene	µg/g	0.013	0.013	5	5	50	0.057	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.088	<0.02	<0.02	<0.02	<0.02	<0.02	<0.021
Pyrene	µg/g	10	100	10	10	100	0.359	<0.02	<0.02	0.054	0.024	0.02	<0.021
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.871	0.0314	<0.01	0.0749	0.0242	0.0157	<0.0105
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				2.613	0.0942	0.03	0.2247	0.0726	0.0471	0.03
IACR (CCME)	µg/g	1	1	-	-	-	10.3	0.139	<0.0625	1.38	0.425	0.283	<0.0656
Laboratory Identification Number							7060116_7060116-21	7060116_7060116-22	7060116_7060116-AJ	7060116_7060116-29	7060116_7060116-30	7060116_7060116-25	7060116_7060116-26
NOTES: #1 CS	R Schedule 5 S	Substance.					·				•	·	·

Not analyzed or no guideline/standard exists. -Concentration is less than the laboratory detection limit indicated. < * As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed. B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations IACR of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. PL Park Land Standards Residential Land Standards RL CL Commercial Land Standards - Intake of contaminated soil. Site specific factors include: - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown. Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Parameter						_	16TP34E1 SA#1	16TP34E1 SA#2	16TP34E2 SA#1	16TP34E2 SA#2	16TP34N1 SA#1	16TP34N1 SA#2
	Unit	CCME -	CCME -		CEP PI	CEB CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	Unit	Parkland	Commercial	COK - PL	CSK - KL	CSR - CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP34E1 SA#1 D=0.15m	16TP34E1 SA#2 D=0.4m	16TP34E2 SA#1 D=0.15m	16TP34E2 SA#2 D=0.4m	16TP34N1 SA#1 D=0.15m	16TP34N1 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	7.1	8.6	5.1	4.6	3	5.1
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	-	<100	-	<100	-
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	-	<100	-	<100	-
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	-	<200	-	<200	-
F3-PAH	µg∕g	-	-	-	-	-	<200	-	<200	-	<200	-
F4 (C34-C50)	µg∕g	2800	3300	-	-	-	<200	-	<200	-	<200	-
Reached Baseline at C_{50}	N/A	-	-	-	-	-	YES	-	YES	-	YES	-
Polycyclic Aromatic Hydrocarbo	ons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.03	<0.005	<0.005	<0.005	0.026	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.149	<0.004	<0.004	<0.004	0.115	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.599	<0.01	<0.01	<0.01	0.039	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 #1	10 ^{#1}	0.505	<0.01	<0.01	<0.01	0.093	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.87	<0.01	<0.01	<0.01	0.233	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.431	<0.02	<0.02	<0.02	0.362	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.4	<0.01	<0.01	<0.01	0.093	<0.01
Chrysene	µg/g	-	-	-	-	-	0.739	<0.01	<0.01	<0.01	0.098	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.105	<0.005	0.006	<0.005	0.033	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.8	<0.01	<0.01	<0.01	0.118	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.361	<0.02	<0.02	<0.02	0.177	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.041	<0.02	<0.02	<0.02	0.028	<0.02
Pyrene	µg/g	10	100	10	10	100	1.1	<0.02	<0.02	<0.02	0.115	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.881	<0.01	<0.01	<0.01	0.194	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				2.643	0.03	0.03	0.03	0.582	0.03
IACR (CCME)	µg/g	1	1	-	-	-	14.3	<0.0656	<0.0656	<0.0656	3.29	<0.0656
Laboratory Identification Number	er						7060116_7060116-53	7060116_7060116-54	7060116_7060116-49	7060116_7060116-50	7060116_7060116-41	7060116_7060116-42
NOTES: #1 - < *	CSR Schedule 5 Not analyzed or n Concentration is lo As the site has the factor of three as	Substance. o guideline/standard ess than the laborato e potential of soil con per CCME guidance	exists. ry detection limit indi taminated by creosol (2010).	cated. te the calculated B	(a)P TPE was multij	blied by a safety						

Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard
	Most stringent applicable site specific standard is shown.
	- Groundwater flow to surface water used by freshwater aquatic life.
	- Groundwater used for drinking water.
	- Toxicity to soil invertebrates and plants.
Site specific factors include:	- Intake of contaminated soil.
CL	Commercial Land Standards
RI	Residential Land Standards
PI	Park Land Standards
IACK	of each listed PAH in the CCME PAH 2010 guideline divided by the soil guality guideline listed
	pervice (U.U.1)+(cnrysere)(U.U.1)+(dibenz(a,n)antinracene)(1)+(indeno(1,2,3-cd)pyrene)(U.1).
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g
	listed.
	products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE
B[a]P TPE	Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the
001	Schedules 4. 5 and 10).
CSR	Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96 includes amendments up to B C. Reg. 184/2016. July 19, 2016 -
	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum
	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CCME	
	factor of three as per CCME guidance (2010)

							16TP34S1 SA#1	16TP34S1 SA#2	16TP34W1 SA#1	16TP34W1 SA#2	16TP34W2 SA#1	16TP34W2 SA#2
Baramatar	Unit	CCME - Residential/	CCME -	CSP PI	CSD DI		0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	Unit	Parkland	Commercial	CSK-PL	COK - KL	COR-CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP34S1 SA#1 D=0.15m	16TP34S1 SA#2 D=0.4m	16TP34W1 SA#1 D=0.15m	16TP34W1 SA#2 D=0.4m	16TP34W2 SA#1 D=0.15m	16TP34W2 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	2.9	3.6	3.9	3.8	10	5.9
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	-	<100	-	<100	-
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	-	<100	-	<100	-
F3 (C16-C34)	µg/g	300	1700	-	-	-	205	-	<200	-	<200	-
F3-PAH	µg/g	-	-	-	-	-	<200	-	<200	-	<200	-
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	-	<200	-	<200	-
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	-	YES	-	YES	-
Polycyclic Aromatic Hydrocarb	ons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.119	<0.005	<0.005	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.365	0.005	<0.004	<0.004	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.239	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.573	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	1.25	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	3.09	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.496	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.583	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.149	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.69	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.897	<0.02	<0.02	<0.02	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.086	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.772	<0.02	<0.02	<0.02	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	1.09	<0.01	<0.01	<0.01	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				3.27	0.03	0.03	0.03	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	17.9	<0.0656	<0.0625	<0.0656	<0.0625	<0.0656
Laboratory Identification Numb	er						7060116_7060116-45	7060116_7060116-46	7060116_7060116-61	7060116_7060116-62	7060116_7060116-57	7060116_7060116-58
NOTES: #1 - < * CCME	CSR Schedule 5 S Not analyzed or no Concentration is le As the site has the factor of three as p Canadian Council	Substance. o guideline/standard ess than the laborato e potential of soil con per CCME guidance of Ministers of the E	exists. ry detection limit ind taminated by creoso (2010). avironment (CCME)	icated. te the calculated Bi	(a)P TPE was multip	blied by a safety						

	factor of three as per CCME guidance (2010).
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CSR B[a]P TPE	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10). Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE
B[a]P TPE =	listed. (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)pervlene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil guality guideline listed.
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		0.0115					16TP37E1 SA#1	16TP37E1 SA#2	16TP37E2 SA#1	16TP37E2 SA#2	16TP37N1 SA#1	16TP37N1	SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	
i alameter	onic	Parkland	Commercial	CON-TE	COR-RE	CON-CE	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/20	17
							16TP37E1 SA#1 D=0.15m	16TP37E1 SA#2 D=0.4m	16TP37E2 SA#1 D=0.15m	16TP37E2 SA#2 D=0.4m	16TP37N1 SA#1 D=0.15m	16TP37N1 SA#2 D=0.4m	Dupe #6
Physical Parameters													
Moisture	%	-	-	-	-	-	3.3	7.2	5.7	8.1	2.5	2.9	3.1
Hydrocarbons				-	-	-							
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbons	s (PAHs)												
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.007	<0.005	<0.005	<0.005	0.006	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.032	0.011	<0.004	<0.004	0.028	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.016	<0.01	<0.01	<0.01	0.011	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.033	0.01	<0.01	<0.01	0.022	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.12	0.022	<0.01	<0.01	0.051	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.124	0.033	<0.02	<0.02	0.165	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.047	<0.01	<0.01	<0.01	0.022	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.052	0.013	<0.01	<0.01	0.026	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.011	<0.005	<0.005	<0.005	0.009	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.051	0.014	<0.01	<0.01	0.032	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.066	<0.02	<0.02	<0.02	0.05	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.047	<0.02	<0.02	<0.02	0.035	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.0754	0.0131	<0.01	<0.01	0.0485	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.2262	0.0393	0.03	0.03	0.1455	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	1.59	0.179	<0.0625	<0.0625	0.777	<0.0625	<0.0625
Laboratory Identification Number							7060116_7060116-85	7060116_7060116-86	7060116_7060116-81	7060116_7060116-82	7060116_7060116-65	7060116_7060116-66	7060116_7060116-AK
NOTES: #1 CS	R Schedule 5	Substance.		1	1		1		I		1		

Not analyzed or no guideline/standard exists. -< Concentration is less than the laboratory detection limit indicated. As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 -Schedules 4, 5 and 10). B[a]P TPE Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed B[a]P TPE = (benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1). Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations IACR of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed. Park Land Standards ΡL Residential Land Standards RL CL Commercial Land Standards

 Site specific factors include:
 - Intake of contaminated soil.

 Site specific factors include:
 - Intake of contaminated soil.

 Toxicity to soil invertebrates and plants.
 - Groundwater used for drinking water.

 Groundwater flow to surface water used by freshwater aquatic life.
 Most stringent applicable site specific standard is shown.

 Bold
 Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

						_	16TP37S1 SA#1	16TP37S1 SA#2	16TP37W1 SA#1	16TP37W1 SA#2	16TP37W2 SA#1	16TP37W2 SA#2
Perameter	Unit	CCME - Bosidential/	CCME -		CEP PI	CEB CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Parameter	Unit	Parkland	Commercial	CSR-PL	CSK - KL	CSR-CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
		. annana					16TP37S1 SA#1 D=0.15m	16TP37S1 SA#2 D=0.4m	16TP37W1 SA#1 D=0.15m	16TP37W1 SA#2 D=0.4m	16TP37W2 SA#1 D=0.15m	16TP37W2 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	4	3.3	4.5	6.5	7	6.1
Hydrocarbons				-	-	-						
F2 (C10-C16)	µg/g	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	µg/g	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbo	ns (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.131	0.007	0.019	0.011	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.5	0.03	0.071	0.049	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.084	<0.01	0.037	0.028	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 #1	10 ^{#1}	0.15	<0.01	0.078	0.056	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.273	<0.01	0.212	0.192	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	1.48	0.029	0.282	0.23	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.105	<0.01	0.09	0.075	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.126	<0.01	0.106	0.077	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.041	<0.005	0.023	0.021	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.225	<0.01	0.139	0.062	<0.01	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.263	<0.02	0.126	0.115	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	0.013	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.043	<0.02	0.035	0.021	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.276	<0.02	0.123	0.063	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.291	<0.01	0.161	0.128	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.873	0.03	0.483	0.384	0.03	0.03
IACR (CCME)	µg/g	1	1	-	-	-	4.23	<0.0625	3	2.56	<0.0625	<0.0625
Laboratory Identification Number	er						7060116_7060116-69	7060116_7060116-70	7060116_7060116-77	7060116_7060116-78	7060116_7060116-73	7060116_7060116-74
NOTES: #1 (- < (* CCME	CSR Schedule 5 Not analyzed or n Concentration is I As the site has th factor of three as	Substance. o guideline/standard ess than the laborato e potential of soil con per CCME guidance	exists. ry detection limit ind taminated by creoso (2010).	icated. bte the calculated B	(a)P TPE was multi	blied by a safety						

	factor of three as per CCME guidance (2010).										
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.										
CSR	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).										
Β[α]Ρ ΤΡΕ	Benzo[a]Pyrene (B[a]P) I otal Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed.										
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).										
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil guality guideline listed.										
PL	Park Land Standards										
RL	Residential Land Standards										
CL	Commercial Land Standards										
Site specific factors include:	- Intake of contaminated soil.										
	- Toxicity to soil invertebrates and plants.										
	- Groundwater used for drinking water.										
	- Groundwater flow to surface water used by freshwater aquatic life.										
	Most stringent applicable site specific standard is shown.										
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard										

							16TP39E1 SA#1	16TP39E1 SA#2	16TP39E2 SA#1	16TP39E2 SA#2	16TP39N1 SA#1	16TP39N1 SA#2
Perameter	Unit	CCME - Besidential/	CCME -		CEP PI	CSB CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Parameter	Unit	Parkland	Commercial	CSR - PL	CSK - KL	CSR-CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
		. unuunu					16TP39E1 SA#1 D=0.15m	16TP39E1 SA#2 D=0.4m	16TP39E2 SA#1 D=0.15m	16TP39E2 SA#2 D=0.4m	16TP39N1 SA#1 D=0.15m	16TP39N1 SA#2 D=0.4m
Physical Parameters												
Moisture	%	-	-	-	-	-	13.6	9.2	8.8	3.8	4.4	3.5
Hydrocarbons				-	-	-						
F2 (C10-C16)	hð\ð	150	260	-	-	-	<100	<100	<100	<100	<100	<100
F2-NAPHTHALENE	hð\ð	-	-	-	-	-	<100	<100	<100	<100	<100	<100
F3 (C16-C34)	µg/g	300	1700	-	-	-	<200	<200	<200	<200	988	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200	987	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES	YES	YES
Polycyclic Aromatic Hydrocarbo	ons (PAHs)											
2-methylnaphthalene	µg/g	-	-	-	-	-	0.53	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.007	<0.005	<0.005	<0.005	0.03	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.039	<0.004	0.005	<0.004	0.138	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.023	<0.01	<0.01	<0.01	0.059	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.053	<0.01	<0.01	<0.01	0.11	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.126	<0.01	0.015	<0.01	0.279	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.088	<0.02	<0.02	<0.02	0.718	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.045	<0.01	<0.01	<0.01	0.1	<0.01
Chrysene	µg/g	-	-	-	-	-	0.077	<0.01	<0.01	<0.01	0.12	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.012	<0.005	<0.005	<0.005	0.034	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.06	<0.01	<0.01	<0.01	0.165	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	0.018	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.051	<0.02	<0.02	<0.02	0.234	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	0.271	<0.01	<0.01	<0.01	0.019	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	0.244	<0.02	<0.02	<0.02	0.065	<0.02
Pyrene	µg/g	10	100	10	10	100	0.075	<0.02	<0.02	<0.02	0.17	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.0953	<0.01	<0.01	<0.01	0.229	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.2859	0.03	0.03	0.03	0.687	0.03
IACR (CCME)	µg/g	1	1	-	-	-	1.67	<0.0625	0.0955	<0.0625	3.86	<0.0625
Laboratory Identification Number	er						7060116_7060116-AF	7060116_7060116-AG	7060116_7060116-AB	7060116_7060116-AC	7060116_7060116-89	7060116_7060116-90
NOTES: #1 - < *	CSR Schedule 5 S Not analyzed or no Concentration is le As the site has the factor of three as p	Substance. o guideline/standard ass than the laborato a potential of soil con per CCME guidance	exists. ry detection limit indi taminated by creoso (2010).	icated. te the calculated B	(a)P TPE was multi	plied by a safety						

CCME	factor of three as per CCME guidance (2010).
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use.
CSR	Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10). Beazo(a)Purene (MalP) Total Potency Equivalent (TPE) relative to henzo(a)purene which is determined by adding the
DIAIR INE	products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed.
B[a]P TPE =	(benzo(a)anthracene)(0.1)+(benzo(a)pyrene)(1.0)+(benzo(b)fluoranthene)(0.1)+(benzo(k)fluoranthene)(0.1)+(Benzo(g)perylene)(0.01)+(chrysene)(0.01)+(dibenz(a,h)anthracene)(1)+(indeno(1,2,3-cd)pyrene)(0.1).
IACR	Calculated risk of Index of additive Cancer Risk (IACR) which is determined by adding the measured concentrations of each listed PAH in the CCME PAH 2010 guideline divided by the soil guality guideline listed.
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

						1	16TP39W1 SA#1	16TP39W1 SA#2	16TP39W2 SA#1	16TP39W2 SA#2
		CCME -	CCME -				0.15 m	0.4 m	0.15 m	0.4 m
Parameter	Unit	Residential/	Commercial	CSR - PL	CSR - RL	CSR - CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017
		Parkiano					16TP39W1 SA#1 D=0.15m	16TP39W1 SA#2 D=0.4m	16TP39W2 SA#1 D=0.15m	16TP39W2 SA#2 D=0.4m
Physical Parameters										
Moisture	%	-	-	-	-	-	6.2	7	11.4	7.4
Hydrocarbons				-	-	-				
F2 (C10-C16)	µg∕g	150	260	-	-	-	<100	<100	<100	<100
F2-NAPHTHALENE	µg∕g	-	-	-	-	-	<100	<100	<100	<100
F3 (C16-C34)	µg∕g	300	1700	-	-	-	<200	<200	<200	<200
F3-PAH	µg/g	-	-	-	-	-	<200	<200	<200	<200
F4 (C34-C50)	µg/g	2800	3300	-	-	-	<200	<200	<200	<200
Reached Baseline at C ₅₀	N/A	-	-	-	-	-	YES	YES	YES	YES
Polycyclic Aromatic Hydrocar	bons (PAHs)									
2-methylnaphthalene	µg/g	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01
Acenaphthene	µg/g	0.28	0.28	-	-	-	<0.005	<0.005	<0.005	<0.005
Acenaphthylene	µg/g	320	320	-	-	-	0.018	<0.005	<0.005	<0.005
Anthracene	µg/g	2.5	32	-	-	-	0.067	0.02	<0.004	<0.004
Benz(a)anthracene	µg/g	1	10	1	1	10	0.029	<0.01	<0.01	<0.01
Benzo(a)pyrene	µg/g	20	72	1 ^{#1}	1 ^{#1}	10 ^{#1}	0.07	0.022	<0.01	<0.01
Benzo(b)fluoranthene	µg/g	1	10	1	1	10	0.179	0.052	<0.01	<0.01
Benzo(g,h,i)perylene	µg/g	-	-	-	-	-	0.299	0.072	<0.02	<0.02
Benzo(k)fluoranthene	µg/g	1	10	1	1	10	0.07	0.019	<0.01	<0.01
Chrysene	µg/g	-	-	-	-	-	0.076	0.022	<0.01	<0.01
Dibenz(a,h)anthracene	µg/g	1	10	1	1	10	0.02	0.005	<0.005	<0.005
Fluoranthene	µg/g	50	180	-	-	-	0.086	0.026	0.014	<0.01
Fluorene	µg/g	0.25	0.25	-	-	-	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-c,d)pyrene	µg/g	1	10	1	1	10	0.126	0.033	<0.02	<0.02
Naphthalene	µg/g	0.013	0.013	5	5	50	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/g	0.046	0.046	5	5	50	<0.02	<0.02	<0.02	<0.02
Pyrene	µg/g	10	100	10	10	100	0.084	0.024	<0.02	<0.02
B(a)P Total Potency Equivalent	µg/g	5.3	5.3	-	-	-	0.142	0.0405	<0.01	<0.01
B[a]P TPE multiplied by 3*	µg/g	5.3	5.3				0.426	0.1215	0.03	0.03
IACR (CCME)	µg∕g	1	1	-	-	-	2.5	0.689	<0.0625	<0.0625
Laboratory Identification Num	ber						7060116_7060116-97	7060116_7060116-98	7060116_7060116-93	7060116_7060116-94
#1 - < * CCME CSR B[a]P TPE B[a]P TPE =	Not analyzed or no guideline/standard exists. Concentration is less than the laboratory detection limit indicated. As the site has the potential of soil contaminated by creosote the calculated B(a)P TPE was multiplied by a safety factor of three as per CCME guidance (2010). Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use. Canadian Council of Ministers of the Environment (CCME) (2008). Canada-Wide Standards for Petroleum Hydrocarbons (PHCs) in Soil, for coarse soils under Residential/Parkland and Commercial land use. BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10). Benzo[a]Pyrene (B[a]P) Total Potency Equivalent (TPE) relative to benzo(a)pyrene which is determined by adding the products of the measured concentrations of each listed PAH in the CCME PAH 2010 guideline multiplied by the TPE listed. (benzo(a)anthracene)(0.1)±/(benzo(b)fuoranthene)(0.1)±/(Benzo(c)									
IACR	Calculated risk of	Index of additive Car	ncer Risk (IACR) wh	ich is determined by	y adding the measu	red concentrations				

of each listed PAH in the CCME PAH 2010 guideline divided by the soil quality guideline listed.

PL

RL

CL

Bold

Park Land Standards

Site specific factors include: - Intake of contaminated soil.

Residential Land Standards Commercial Land Standards

Toxicity to soil invertebrates and plants.Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown. Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP02E1 SA#1	16TP02E1 SA#2	16TP02E2 SA#1	16TP02E2 SA#2	16TP02W1	SA#1	16TP02W1 SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.15 m	0.4	0.15 m	0.4 m	0.15 m	0.15 m	0.4 m
i ulunotor	onit	Parkland	Commercial	001112	oon ne		5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/20	17	5/29/2017
							16TP02E1 SA#1 D=0.15m	16TP02E1 SA#2 D=0.4m	16TP02E2 SA#1 D=0.15m	16TP02E2 SA#2 D=0.4m	16TP02W1 SA#1 D=0.15m	DUP #1	16TP02W1 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.7	7.4	7.4	7.7	8	7.9	7.4
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.38	0.14	0.13	<0.1	0.66	0.63	<0.1
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	2.92	1.66	1.79	1.44	3.97	4.08	1.55
Barium	µg/g	500	2000	400 #1	400 ^{#1}	400 #1	98.4	115	114	92.5	102	94.1	125
Beryllium	µg/g	4	8	4	4	8	0.42	0.66	0.58	0.58	0.37	0.34	0.64
Boron_	µg/g	-	-	-	-	-	<2	2.1	2.8	<2	2.3	<2	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.3	0.135	0.171	0.105	0.424	0.408	0.146
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	35.1	33.1	32.8	32.1	41	36.5	34.9
Cobalt	µg/g	50	300	50	50	300	11.4	14.2	14	13.6	12.4	11.6	14.6
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	84.5	19.4	21.1	15.1	96.8	86.5	19.2
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	11.3	4.26	5.7	3.73	15.8	14.1	4.27
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	11.7	10.7	9.76	10.3	14.3	13.3	10.5
Manganese	hð\ð	-	-	1800 ^{#3}	1800 ^{#3}	19,000 #3	511	749	728	677	521	483	789
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	1.21	0.99	0.92	0.73	1.49	1.46	1.01
Nickel	hð\ð	45	89	100	100	500	27.6	24.9	24.3	24.7	32.6	30.8	25.1
Selenium	hð\ð	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð/ð	-	-	47,000 #3	47,000 #3	100,000 #3	40.3	58.8	63.3	47.9	39.6	40.5	65.6
Thallium	µg/g	1	1	-	-	-	0.14	0.11	0.1	0.11	0.16	0.14	0.11
Tin	µg/g	50	300	50	50	300	1	0.72	0.77	0.66	1.45	1.31	0.72
Uranium	hð/ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.779	1.21	0.961	0.95	0.828	0.673	1.05
Vanadium	hð/ð	130	130	200	200	-	50.9	56.3	55.7	55.5	57.5	51.8	57.9
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	78.3	83.7	82.0	63.3	75.6	75.6	92.3
Laboratory Identification Nu	mber						7052353_7052353-05	7052353_7052353-06	7052353_7052353-01	7052353_7052353-02	7052353_7052353-13	7052353_7052353-41	7052353_7052353-14
NOTES:													
#1	CSR Schedule 5 S	Substance.											
#2	Standard is pH dep	pendent. Values sho	own based on media	in pH of 7.9									
#3	CSR Schedule 10	Substance.	oviete										
-	Not analyzed or no guideline/standard exists.												
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land												
	use												
CSR	BC Contaminated 2016 - Schedules	Sites Regulation (B 4, 5 and 10).	C Reg. 375/96, inclu	udes amendments u	p to B.C. Reg. 184,	2016, July 19,							
PL	Park Land Standar	rds											
RL	Residential Land S	Standards											

- CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants.
 - Groundwater used for drinking water.
 - Groundwater flow to surface water used by freshwater aquatic life.
 - Most stringent applicable site specific standard is shown.
 - Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		00115					16TP02W2 SA#1	16TP02W2 SA#2	16TP04E1 SA#1	16TP04E1 SA#2	16TP04E2 SA#1	16TP04E2 SA#2	16TP04W1 SA#1
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m
T di diffeter	onit	Parkland	Commercial		OOK KE	OOK OL	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/29/2017
							16TP02W2 SA#1 D=0.15m	16TP02W2 SA#2 D=0.4m	16TP04E1 SA#1 D=0.15m	16TP04E1 SA#2 D=0.4m	16TP04E2 SA#1 D=0.15m	16TP04E2 SA#2 D=0.4m	16TP04W1 SA#1 D=0.15m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7	7.3	8	7.8	6.8	7	8
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.13	0.12	0.33	0.13	<0.1	<0.1	0.45
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.78	1.71	3.03	1.44	1.15	1.08	3.79
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	105	94.1	99.4	54.3	50	66.1	112
Beryllium	µg/g	4	8	4	4	8	0.52	0.57	0.35	0.35	0.36	0.38	0.36
Boron_	hð\ð	-	-	-	-	-	2.8	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.158	0.112	0.413	0.101	0.071	0.059	0.418
Chromium	hð\ð	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	29.6	33.9	34.4	20.1	20.1	23.9	42.8
Cobalt	hð\ð	50	300	50	50	300	12.4	13.3	11.5	8.82	8.7	9.61	11.1
Copper	hð\ð	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	28.9	20.3	94.7	16	10.2	9.78	58
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	7.66	5.22	8.49	4.3	2.42	1.73	23.3
Lithium	hð\ð	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	9.25	10.2	12.4	6.9	6.88	5.77	14.7
Manganese	µg∕g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	661	657	471	441	410	403	463
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	0.97	0.83	1.11	0.81	0.71	0.79	1.12
Nickel	µg∕g	45	89	100	100	500	21.9	24	31	16.2	13.9	17.8	33.8
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47,000 ^{#3}	47,000 #3	100,000 #3	56.1	50.4	41.5	30.7	31.4	41.1	51.1
Thallium	µg/g	1	1	-	-	-	<0.1	0.1	0.14	<0.1	<0.1	<0.1	0.19
Tin	µg/g	50	300	50	50	300	0.73	0.76	0.85	0.44	0.49	0.55	1.21
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.821	0.913	0.804	0.748	0.71	0.584	0.654
Vanadium	µg/g	130	130	200	200	-	49.9	55.9	52	41.4	44.8	44.5	55.1
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	78.9	65.3	74.9	53.9	48.5	46.1	70.5
Laboratory Identification	Number						7052353_7052353-09	7052353_7052353-10	7052353_7052353-21	7052353_7052353-22	7052353_7052353-17	7052353_7052353-18	7052560_7052560-14
NOTES:							÷		·	-			• •
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sh	own based on media	an pH of 7.9									
#3	CSR Schedule 10	0 Substance.											
-	Not analyzed or r	o guideline/standard	l exists.										
<	Concentration is	less than the laborate	ory detection limit in	dicated.									
CCME	Canadian Counci Protection of Env use	I of Ministers of the E ironmental and Hum	Environment (CCME an Health, for coars) (Updated 2015). S e soils under Resid	Soil Quality Guidelin ential/Parkland and	es for the Commercial land							
CSR	BC Contaminated 2016 - Schedules	d Sites Regulation (B s 4, 5 and 10).	C Reg. 375/96, inclu	udes amendments	up to B.C. Reg. 184	/2016, July 19,							
PL	Park Land Stand	ards											

- RLResidential Land StandardsCLCommercial Land Standards
- Site specific factors include: Intake of contaminated soil.
 - Toxicity to soil invertebrates and plants.
 - Groundwater used for drinking water.
 - Groundwater flow to surface water used by freshwater aquatic life.
 - Most stringent applicable site specific standard is shown.
 - Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

CCME -		0.0115					16TP04W1 SA#2	16TP04W2 SA#1	16TP04W2 SA#2	16TP14E1SA#1	16TP14E1SA#2	16TP14E2SA#1	16TP14E2SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	onic	Parkland	Commercial	OOK TE	OOK IL	OOK OL	5/29/2017	5/29/2017	5/29/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017
							16TP04W1 SA#2 D=0.4m	16TP04W2 SA#1 D=0.15m	16TP04W2 SA#2 D=0.4m	16TP14E1SA#1 D=0.15m	16TP14E1SA#2 D=0.4m	16TP14E2SA#1 D=0.15m	16TP14E2SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.9	6.7	7.1	8.1	7.6	7.7	7.2
Metals				-	-	-							
Antimony	µg∕g	20	40	20	20	40	0.1	0.12	<0.1	0.43	0.18	<0.1	<0.1
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.44	1.5	1.15	3.55	1.57	1.5	1.11
Barium	µg/g	500	2000	400 #1	400 ^{#1}	400 #1	63.1	66.9	49.5	84.8	90.2	75.5	72.7
Beryllium	µg/g	4	8	4	4	8	0.37	0.34	0.44	0.22	0.42	0.37	0.33
Boron_	µg/g	-	-	-	-	-	<2	2.2	<2	<2	<2	2.8	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.116	0.135	0.081	0.412	0.175	0.145	0.125
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	21.6	19.5	22.8	32.6	28.4	22.9	21.3
Cobalt	µg/g	50	300	50	50	300	8.79	8.4	9.75	9.13	11.9	10.3	9.37
Copper	hð\d	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	14.6	34.6	12.6	134	19.9	26.4	15
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	3.63	9.52	2.17	13.6	4.7	4.75	2.86
Lithium	hð\d	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	7.53	6.19	7.27	9.43	7.76	6.65	5.76
Manganese	hð\d	-	-	1800 #3	1800 ^{#3}	19,000 ^{#3}	443	440	518	369	569	485	430
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	0.046	<0.04	0.041
Molybdenum	hð\d	10	40	10	10	40	0.69	0.88	1.11	1.62	0.92	1.07	0.64
Nickel	µg∕g	45	89	100	100	500	16.5	13.8	18.4	30.3	22.1	18.4	17.4
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47.000 ^{#3}	47.000 ^{#3}	100.000 #3	36.9	43.2	33.6	39.3	52.9	45.5	46
Thallium	µg/g	1	1	-	-	-	<0.1	<0.1	<0.1	0.14	<0.1	<0.1	<0.1
Tin	µg/g	50	300	50	50	300	0.44	0.57	0.51	1.1	0.63	0.57	0.48
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.866	0.684	0.675	0.677	1.09	0.749	0.705
Vanadium	µg/g	130	130	200	200	-	43.5	39.2	43.2	45.1	50.7	44.4	43.1
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	52.3	64	52.5	62.7	89.9	69.5	68
Laboratory Identification N	Number						7052560_7052560-21	7052560_7052560-22	7052560_7052560-17	7052560_7052560-73	7052560_7052560-18	7052560_7052560-01	7052560_7052560-02
NOTES:		•	•	-	•	•	•			·	•		
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sho	own based on media	an pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or n	o quideline/standard	exists										

Not analyzed or no guideline/standard exists.

<	Concentration is less than the laboratory detection limit indicated.
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard Bold

	CCME -		CSD DI	CSP PI		16TP14W1	SA#1	16TP14W1SA#2	16TP14W1SA#3	16TP14W2SA#1	16TP14W2SA#2	16TP14N1 SA#1	
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.15 n	ı	0.4 m	0.7 m	0.15 m	0.4 m	0.15 m
i arameter	onne	Parkland	Commercial	JOR TE	OOK KE	OOK OL	5/30/20	17	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/29/2017
							16TP14W1SA#1 D=0.15m	DUP #3	16TP14W1SA#2 D=0.4m	16TP14W1SA#3 D=0.7m	16TP14W2SA#1 D=0.15m	16TP14W2SA#2 D=0.4m	16TP04N1 SA#1 D=0.15m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.9	7.8	7.6	7.5	7	7.3	8.6
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	0.32	0.44	0.36	0.11	0.15	<0.1	0.68
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	3.22	3.5	3.3	1.39	1.85	1.41	4.73
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	71.8	91.5	95	62.1	73	44.4	101
Beryllium	µg/g	4	8	4	4	8	0.23	0.23	0.36	0.39	0.36	0.33	0.3
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2.0	<2	<2	<2
Cadmium	hð\ð	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.354	0.41	0.331	0.122	0.156	0.07	0.428
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	32.6	32.8	34.9	26.7	24.7	18.5	41.3
Cobalt	hð\ð	50	300	50	50	300	8.71	9.73	11.9	11	10.5	8.58	10.4
Copper	hð\ð	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	87.8	120	77.5	16.7	57	9.97	68.6
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	11.9	14.9	11.3	3.22	7.65	2.68	13.8
Lithium	hð\ð	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	10.1	8.98	9.62	6.72	7.11	5.24	14.4
Manganese	hð\ð	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	360	384	497	504	492	408	433
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	0.046	<0.040	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	1.51	1.79	1.19	0.77	0.99	0.9	1.51
Nickel	hð\ð	45 89 100 100 500 23.8 27.8 26.7 20.2 20.8 14.3 33.6											
Selenium	µg/g	1 2.9 3 3 10 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.5											
Silver	mg/kg	20	40	20	20	40	0.22	0.21	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð\ð	-	-	47,000 #3	47,000 #3	100,000 #3	28.9	29.2	40.9	37.4	41.3	26.3	41.3
Thallium	µg/g	1	1	-	-	-	0.13	0.15	0.15	<0.10	<0.1	<0.1	0.18
Tin	hð\ð	50	300	50	50	300	0.91	1.24	1	0.57	0.73	0.46	1.92
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.758	0.887	1.22	0.852	1.32	1.07	1.13
Vanadium	µg/g	130	130	200	200	-	47.2	45.7	51	53.3	44	53.8	52.2
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	59.5	66	74.6	70.5	70	49.8	63.7
Laboratory Identification Nun	nber						7052353_7052353-33	7052353_7052353-34	7052353_7052353-42	7052560_7052560-19	7052353_7052353-37	7052353_7052353-38	7052353_7052353-29
NOTES:													
#1	CSR Schedule 5 S	ubstance.											
#2	Standard is pH dep	endent. Values she	own based on media	an pH of 7.9									
#3	Not analyzed or no	Substance.	oviete										
-	Concentration is le	ss than the laborate	orv detection limit inc	dicated									
CCME	Canadian Council	of Ministers of the F	Environment (CCME)) (Updated 2015) S	oil Quality Guideline	es for the							
	Protection of Enviro	onmental and Hum	an Health, for coarse	e soils under Reside	ential/Parkland and	Commercial land							
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).												
PL	Park Land Standards												
RL	Residential Land S	tandards											
CL	Commercial Land	Standards											
Site specific factors include:	- Intake of contami	nated soil.											
	- I OXICITY TO SOIL INV	d for drinking weter	ns.										
	- Groundwater used for drinking water.												
	2.24.44401 100			1									

Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

PHASE III ESA, CN RAIL LINE ROW MILE 105.9 TO 106.6 AND MILE 107.0 TO 107.5, DUCK LAKE IR7 FILE: ENV.VENV03191-01 | OCTOBER 2018 | ISSUED FOR REVIEW

ССМЕ-			CCME -	CME -	CSR - RL	RL CSR - CL	16TP14N1	SA#2	16TP14S1 SA#1	16TP14S1 SA#2	16TP16E1SA#1	16TP16E1SA#2	16TP16E2SA#1
Parameter	Unit	CCME - Residential/	CCME -				0.4 m	ı	0.15 m	0.4 m	0.15	0.4 m	0.15 m
Faiameter	Onit	Parkland	Commercial	COK-FL	COK - KL	COR-CL	5/29/2017	5/29/2017	5/29/2017	5/29/2017	5/30/2017	5/30/2017	5/30/2017
							16TP04N1 SA#2 D=0.4m	DUP #2	16TP04S1 SA#1 D=0.15m	16TP04S1 SA#2 D=0.4m	16TP16E1SA#1 D=0.15m	16TP16E1SA#2 D=0.4m	16TP16E2SA#1 D=0.15m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.7	8	8.4	8.3	8.1	7.8	6.8
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	<0.1	<0.1	0.65	0.17	0.42	0.15	0.14
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.34	1.67	3.75	2.96	4.54	1.58	1.73
Barium	hð\ð	500	2000	400 ^{#1}	400 #1	400 #1	75.1	72.8	80.8	83.5	89.7	63.2	60.6
Beryllium	hð\ð	4	8	4	4	8	0.4	0.37	0.27	0.31	0.26	0.37	0.29
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.162	0.158	0.34	0.321	0.395	0.116	0.132
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	22.9	23.2	32	33	28.7	25.4	21
Cobalt	µg/g	50	300	50	50	300	9.72	9.13	7.88	9.49	9.02	11.1	8.83
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	14.7	15.3	81.4	28.9	63.1	17.2	32.2
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	3.16	3.29	13.5	3.85	11.5	2.91	6.8
Lithium	hð\ð	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	7.63	7.55	11.2	12.9	11.6	6.43	5.42
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	549	449	350	398	409	466	408
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	0.92	0.82	1.66	0.78	0.96	0.7	0.86
Nickel	hð\ð	45	89	100	100	500	17.1	16.5	24.7	25	23.4	18.4	16
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47,000 #3	47,000 #3	100,000 #3	45.5	45.3	44.5	54.3	34.4	35.6	46.1
Thallium	µg/g	1	1	-	-	-	<0.1	<0.1	0.14	0.16	0.16	<0.1	<0.1
Tin	hð\ð	50	300	50	50	300	0.5	0.49	1.63	0.43	0.88	0.58	0.58
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.913	0.856	1.61	0.864	0.62	0.719	0.625
Vanadium	µg/g	130	130	200	200	-	43.1	43.9	42.9	47.9	47.1	49.6	42.3
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	80.1	67.3	54.9	64.6	58.9	57.8	54.6
Laboratory Identification N	Number						7052353_7052353-30	7052353_7052353-25	7052353_7052353-26	7052560_7052560-13	7052560_7052560-09	7052560_7052560-10	7052560_7052560-05
NOTES:													
#1	CSR Schedule 5	5 Substance.											
#2	Standard is pH of	dependent. Values sho	own based on media	in pH of 7.9									
#3	CSR Schedule 10 Substance.												
-	Not analyzed or no guideline/standard exists.												
<	Concentration is	less than the laborate	ory detection limit inc	licated.									
CCME	Civic Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use												
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).												

PL Park Land Standards RL Residential Land Standards CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP16E2SA#2	16TP16N1SA#1	16TP16N1SA#2	16TP16S1SA#1	16TP16S1SA#2	16TP16W1SA#1	16TP16W1SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i di di liotori	onic	Parkland	Commercial	ook i L	oon ne		5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017
							16TP16E2SA#2 D=0.4m	16TP16N1SA#1 D=0.15m	16TP16N1SA#2 D=0.4m	16TP16S1SA#1 D=0.15m	16TP16S1SA#2 D=0.4m	16TP16W1SA#1 D=0.15m	16TP16W1SA#2 D=0.4m
Physical Parameters				-	-	-							-
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.2	8.2	8.6	8.2	8.4	8.1	8
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	<0.1	0.44	0.3	0.58	0.19	0.31	0.22
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.17	4.77	5.03	4.47	3.34	3.77	2.92
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	50.1	107	86.9	86.8	82.9	68	69.7
Beryllium	µg/g	4	8	4	4	8	0.26	0.29	0.27	0.21	0.3	0.23	0.24
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.05	0.512	0.506	0.43	0.288	0.422	0.242
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	18.9	45.7	43.5	33.8	31	35.9	21.7
Cobalt	hð\ð	50	300	50	50	300	8.18	11.6	12.3	9.02	11.5	10.2	8.56
Copper	hð\ð	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	8.63	42.1	41	71.4	26.4	136	23.9
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	1.71	7.12	4.55	16.3	4.29	13.9	4.74
Lithium	hð\ð	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	5.44	12	13	11.4	9.86	10.4	8.08
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 #3	364	444	398	394	443	351	392
Mercury	mg/kg 6.6 24 15 ^{#1} 15 ^{#1} 40 ^{#1} <0.04 <0.04 0.041											0.047	0.041
Molybdenum	µg/g	10	40	10	10	40	0.64	1.16	1.5	1.3	1.03	1.38	0.65
Nickel	hð\ð	45	89	100	100	500	13.2	34.2	36.6	27	27.3	29.5	17.3
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	0.57	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	0.23	<0.2	<0.2	<0.2	0.23	<0.2
Strontium	µg/g	-	-	47,000 #3	47,000 #3	100,000 #3	27.4	37.8	34.4	25	34.6	32.7	31.5
Thallium	µg/g	1	1	-	-	-	<0.1	0.21	0.2	0.19	0.16	0.17	0.11
Tin	hð\ð	50	300	50	50	300	0.41	0.87	0.35	2.81	0.52	0.65	0.5
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	1.31	0.61	0.728	0.741	0.714	0.795	0.788
Vanadium	hð/ð	130	130	200	200	-	39.3	56.1	58.3	48.4	53.8	47.1	41.7
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	43.2	76.2	66.3	62	65.7	57.2	51.3
Laboratory Identification Nu	mber						7052560_7052560-06	7052560_7052560-33	7052560_7052560-34	7052560_7052560-37	7052560_7052560-38	7052560_7052560-29	7052560_7052560-30
NOTES:		•			•	•	·						
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values she	own based on media	an pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or no guideline/standard exists.												
< CCME	Concentration is less than the laboratory detection limit indicated.												
COME	Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use												
CSR	BC Contaminated 2016 - Schedules	d Sites Regulation (B 5 4, 5 and 10).	C Reg. 375/96, inclu	ides amendments ι	ıp to B.C. Reg. 184/	2016, July 19,							
PL	Park Land Standa	ards											
RL	Residential Land	Standards											
. .													

CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil.

- Toxicity to soil invertebrates and plants.

- Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		COME					16TP16W2SA#1	16TP16W2SA#2	16TP17E1SA#1	16TP17E1SA#2	16TP17E2SA#1	16TP17E2SA#2	16TP17W1SA#1
Parameter	Unit	Residential/	CCME -	CSR - PL	CSR - RL	CSR - CL	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m
		Parkland	Commercial				5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017
Dhusiaal Devemeters							16TP16W2SA#1 D=0.15m	16TP16W2SA#2 D=0.4m	16TP17E1SA#1 D=0.15m	16TP17E1SA#2 D=0.4m	16TP17E2SA#1 D=0.15m	16TP17E2SA#2 D=0.4m	16TP17W1SA#1 D=0.15m
Physical Parameters				-	-	-					7.4	7.0	
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	6.9	1	8	8.1	7.4	7.3	7.9
Metals				-	-	-							
Antimony	hð\à	20	40	20	20	40	<0.1	<0.1	0.27	0.3	1.22	<0.1	0.17
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.17	1.23	3.45	3.39	2.82	0.97	3.25
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	53.2	64.4	71.9	78.8	82.5	42.9	52.1
Beryllium	µg/g	4	8	4	4	8	0.3	0.34	0.24	0.23	0.32	0.25	0.18
Boron_	µg/g	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 #1,2	3 #1,2	25 ^{#1,2}	0.068	0.062	0.354	0.307	0.305	0.05	0.338
Chromium	hð\ð	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	19.7	22.1	30	29.1	27.4	19	31.4
Cobalt	hð\ð	50	300	50	50	300	8.73	10.2	9.18	9.06	10.7	7.99	8.43
Copper	µg∕g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	11.3	11.9	54	41.1	36.3	9.54	72.1
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	2.68	2.69	9.43	7.36	38.5	1.78	10.1
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	5.84	5.94	9.97	10.2	6.84	4.72	10.9
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	398	507	382	401	473	331	316
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	0.042	<0.04	<0.04	0.495	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	0.76	0.8	1.05	0.85	1.06	0.67	1
Nickel	µg/g	45	89	100	100	500	14.5	17.1	24.6	22.8	21	13.7	22.8
Selenium	hð\ð	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð\ð	-	-	47,000 ^{#3}	47,000 ^{#3}	100,000 #3	34.5	38.3	29.2	29.6	38.1	28.5	27.4
Thallium	hð\ð	1	1	-	-	-	<0.1	<0.1	0.14	0.14	<0.1	<0.1	0.13
Tin	hð\ð	50	300	50	50	300	0.51	0.5	0.75	0.72	0.82	0.49	0.48
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.752	0.868	0.704	0.694	0.789	0.588	1.23
Vanadium	hð\ð	130	130	200	200	-	38.3	45.3	43.7	44.7	46.5	38.1	41.9
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	46.6	47.4	59.4	55.1	506	43.6	50.8
Laboratory Identification N	lumber						7052560_7052560-25	7052560_7052560-26	7052560_7052560-53	7052560_7052560-54	7052560_7052560-49	7052560_7052560-50	7052560_7052560-45
NOTES:													
#1	CSR Schedule	5 Substance.											
#2	Standard is pH	dependent. Values sh	own based on media	in pH of 7.9									
#3	CSR Schedule	10 Substance.											
-	Not analyzed or	no guideline/standard	exists.	licated									
CCMF	Canadian Cours	cil of Ministore of the	Environment (CCME)	(Undated 201E)	Soil Quality Guidalia	es for the							
COME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land												

	USE
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		0.0115					16TP17W1SA#2	16TP17W2SA#1	16TP17W2SA#2	16TP22E1SA#1	16TP22E1SA#2	16TP22E2SA#1	16TP22E2SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	onic	Parkland	Commercial	001112			5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017
							16TP17W1SA#2 D=0.4m	16TP17W2SA#1 D=0.15m	16TP17W2SA#2 D=0.4m	16TP22E1SA#1 D=0.15m	16TP22E1SA#2 D=0.4m	16TP22E2SA#1 D=0.15m	16TP22E2SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.5	7	7	8.2	7.7	7.9	9.1
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.44	<0.1	<0.1	0.55	0.11	<0.1	<0.1
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	4.11	1.08	1.47	4.21	1.16	1.08	0.91
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	72.9	63.6	63.7	78.6	58.6	52.5	56
Beryllium	hð\ð	4	8	4	4	8	0.21	0.26	0.38	0.21	0.27	0.26	0.2
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	µg∕g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.348	0.077	0.08	0.416	0.071	0.079	0.063
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	26.6	19.7	23.8	28.3	19.6	19.2	15.9
Cobalt	µg∕g	50	300	50	50	300	8.06	8.41	10.9	8.6	8.49	8.45	7.48
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	30.5	10.8	11.8	83.4	10.2	11.5	7.96
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	21.6	6.09	3.11	13.3	2.25	2.24	1.44
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	10.9	5.5	6.5	10.8	5.12	4.79	4.12
Manganese	µg∕g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 #3	375	358	540	393	353	342	329
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	0.042	<0.04	<0.04	<0.04
Molybdenum	µg∕g	10	40	10	10	40	0.8	0.76	1.09	1.33	0.65	0.6	0.67
Nickel	hð\ð	45	89	100	100	500	20.5	14.7	19.3	24.4	14	15.8	12.2
Selenium	µg∕g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg∕g	-	-	47.000 #3	47.000 ^{#3}	100.000 #3	30.1	41.2	32.4	33.4	38.9	31.5	30.7
Thallium	µg/g	1	1	-	-	-	0.14	<0.1	<0.1	0.15	<0.1	<0.1	<0.1
Tin	µg∕g	50	300	50	50	300	0.93	0.58	0.51	1.3	0.49	0.45	0.42
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.677	0.564	0.952	0.724	0.648	0.531	0.372
Vanadium	µg/g	130	130	200	200	-	47.6	38.9	47.3	47	39	37.7	35
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	54.4	57.6	53	62.7	40.5	43.9	37.7
Laboratory Identification	Number						7052560_7052560-46	7052560_7052560-41	7052560_7052560-42	7052560_7052560-61	7052560_7052560-62	7052560_7052560-57	7052560_7052560-58
NOTES:		•		•		•		·		·			
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sho	own based on media	an pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or n	o guideline/standard	exists.										
<	Concentration is le	ess than the laborate	ory detection limit inc	dicated.									
CCME	Canadian Council Protection of Envi	of Ministers of the E ronmental and Huma	nvironment (CCME an Health, for coarse) (Updated 2015). S e soils under Reside	oil Quality Guidelin ential/Parkland and	es for the Commercial land							

	use
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.

PHASE III ESA, CN RAIL LINE ROW MILE 105.9 TO 106.6 AND MILE 107.0 TO 107.5, DUCK LAKE IR7 FILE: ENV.VENV03191-01 | OCTOBER 2018 | ISSUED FOR REVIEW

							16TP22W	ISA#1	16TP22W1SA#2	16TP22W2SA#1	16TP22W2SA#2	16TP28E1 SA#1	16TP28E1 SA#2
Paramotor	Unit	CCME - Bosidential/	CCME -				0.15 ו	n	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Falailletei	Onit	Parkland	Commercial	COK-FL	COK - KL	COR-CL	5/30/20)17	5/30/2017	5/30/2017	5/30/2017	5/31/2017	5/31/2017
		. and and					16TP22W1SA#1 D=0.15m	DUP #4	16TP22W1SA#2 D=0.4m	16TP22W2SA#1 D=0.15m	16TP22W2SA#2 D=0.4m	16TP28E1 SA#1 D=0.15m	16TP28E1 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.2	8.3	8.1	7.5	7.4	8	6.9
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.45	0.41	0.15	<0.1	<0.1	<0.1	<0.1
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	4.19	3.9	2.39	1.15	1.31	1.97	1.82
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	85.7	79.9	66.1	56.5	52.4	52.5	83
Beryllium	µg/g	4	8	4	4	8	0.21	0.21	0.28	0.25	0.25	0.35	0.54
Boron_	µg/g	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.467	0.428	0.218	0.102	0.075	0.121	0.104
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	32.2	33.8	29.8	19.2	19.3	22.5	27.5
Cobalt	µg/g	50	300	50	50	300	9.71	8.96	9.78	8.36	8.84	8.18	11.3
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	96.1	84.5	22	30.9	14.3	19.5	17.6
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	13.1	12	3.65	4.24	3.72	2.89	3.31
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	10.3	9.89	7.93	4.92	4.9	8.32	9.31
Manganese	µg/g	-	-	1800 #3	1800 ^{#3}	19.000 #3	386	378	379	370	362	366	523
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	1.45	1.33	0.83	1.28	0.64	0.55	0.68
Nickel	µg/g	45	89	100	100	500	28.6	26.1	21.2	14.8	14.2	17.9	23.4
Selenium	µg/g	1	2.9	3	3	10	0.51	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	0.23	0.21	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47 000 #3	47 000 ^{#3}	100 000 #3	32.6	30.9	27.3	36.3	29.8	35.6	41.4
Thallium	µg/g	1	1	-	-	-	0.18	0.16	0.12	<0.1	<0.1	<0.1	0.11
Tin	µg/g	50	300	50	50	300	1.18	1.13	0.49	0.46	0.49	0.43	0.62
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	1.23	0.726	0.666	0.508	0.585	0.521	0.839
Vanadium	µg/g	130	130	200	200	-	45.8	45.9	44.2	37.7	42.3	38.6	46.3
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	61.8	60.6	51.7	48.1	42.9	45.2	57.3
Laboratory Identification Nu	umber				100		7052560 7052560-69	7052560 7052560-74	7052560 7052560-70	7052560 7052560-65	7052560 7052560-66	7060116 7060116-17	7060116 7060116-18
NOTES:													
#1	CSR Schedule 5 S	Substance.											
#2	Standard is pH de	pendent. Values sho	own based on media	an pH of 7.9									
#3	CSR Schedule 10	Substance.											
-	Not analyzed or no	o guideline/standard	exists.										
<	Concentration is le	ess than the laborate	bry detection limit inc	dicated.									
COME	Canadian Council Protection of Envir	of Ministers of the E ronmental and Hum	an Health, for coarse) (Updated 2015). S e soils under Reside	Soil Quality Guidelin ential/Parkland and	es for the Commercial land							
CSR	use BC Contaminated	Sites Regulation (B	C Reg. 375/96 inclu	udes amendments i	up to B.C. Reg. 184	/2016. July 19							
	2016 - Schedules	4, 5 and 10).				,,,							
PL	Park Land Standa	Irds											

RLResidential Land StandardsCLCommercial Land Standards

Site specific factors include: - Intake of contaminated soil.

- Toxicity to soil invertebrates and plants.

- Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		00115					16TP28E2 SA#1	16TP28E2 SA#2	16TP28N1 SA#1	16TP28N1 SA#2	16TP28S1 SA#1	16TP28S1 SA#2	16TP28W1 SA#1
Parameter	Unit	CCME - Residential/	CCME -	CSR - PL	CSR - RL	CSR - CL	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m
	•••••	Parkland	Commercial				5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP28E2 SA#1 D=0.15m	16TP28E2 SA#2 D=0.4m	16TP28N1 SA#1 D=0.15m	16TP28N1 SA#2 D=0.4m	16TP28S1 SA#1 D=0.15m	16TP28S1 SA#2 D=0.4m	16TP28W1 SA#1 D=0.15m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	7.4	7.5	9.1	7.8	8.9	8.2	8.3
Metals				-	-	-							
Antimony	μg/g	20	40	20	20	40	<0.1	<0.1	0.12	<0.1	0.11	<0.1	0.75
Arsenic	μg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.59	1.74	2.27	1.42	2.6	1.52	5.71
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	62.3	75.6	38.1	62.1	34.6	59.6	98.7
Beryllium	hð\ð	4	8	4	4	8	0.46	0.55	0.25	0.45	0.21	0.45	0.29
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 #1,2	3 ^{#1,2}	25 ^{#1,2}	0.073	0.097	0.141	0.07	0.148	0.091	0.424
Chromium	hð\ð	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	26.4	26.7	15.4	26.5	15.8	22.6	30.8
Cobalt	hð\ð	50	300	50	50	300	11.4	10.7	4.83	8.99	4.93	9.39	8.72
Copper	μg/g	63	91	150 ^{#1,2}	150 #1,2	250 ^{#1,2}	15.6	15.4	15.4	12.7	14.9	13.8	45.7
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	2.58	3.09	3.64	2.36	2.72	2.52	12.9
Lithium	μg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	8.4	8.89	9.08	8.58	8.16	8.41	13.9
Manganese	hð\ð	-	-	1800 #3	1800 ^{#3}	19,000 #3	468	489	240	416	228	431	402
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	0.67	0.61	0.49	0.6	0.38	0.62	1.18
Nickel	hð\ð	45	89	100	100	500	22.3	21.9	12.3	17.7	13.8	19.2	24
Selenium	hð\ð	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð\ð	-	-	47,000 #3	47,000 ^{#3}	100,000 #3	34.5	35.9	32.1	34.1	34.4	34.5	86
Thallium	hð\ð	1	1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.16
Tin	hð\ð	50	300	50	50	300	0.58	0.59	0.43	0.59	0.28	0.57	1.6
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.626	0.735	0.456	0.666	0.523	0.641	0.604
Vanadium	hð\ð	130	130	200	200	-	41.2	43.7	27	38	28.8	38.4	48.7
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	53.8	54.8	33.6	48.3	30.4	51.3	61.6
Laboratory Identification	Number						7060116_7060116-13	7060116_7060116-14	7060116_7060116-01	7060116_7060116-02	7060116_7060116-05	7060116_7060116-06	7060116_7060116-09
NOTES:													
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sh	own based on media	an pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or n	o guideline/standard	exists.	P / 1									
<	Concentration is I	less than the laborate	bry detection limit in	aicated.									
CCME	Canadian Counci Protection of Env use	I of Ministers of the E ironmental and Hum	Environment (CCME an Health, for coars) (Updated 2015). S e soils under Reside	Soil Quality Guidelin ential/Parkland and	es for the Commercial land							
005													

CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.

- Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

							16TP28W1 SA#2	16TP30E1 SA#1	16TP30E1 SA#2	16TP30E2 SA#1	16TP30E2 SA#2	16TP30S1 SA#1	16TP30S1
Parameter	Unit	CCME - Residential/	CCME -		CSR - PI		0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	Onit	Parkland	Commercial	CONTE	CONTRE	CORFCE	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/201
							16TP28W1 SA#2 D=0.4m	16TP30E1 SA#1 D=0.15m	16TP30E1 SA#2 D=0.4m	16TP30E2 SA#1 D=0.15m	16TP30E2 SA#2 D=0.4m	16TP30S1 SA#1 D=0.15m	16TP30S1 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	9	7.8	8.4	7.1	7.3	7.8	8.4
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	0.25	0.39	0.22	0.19	0.29	0.32	0.23
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	3.85	3.37	3.73	2.38	2.56	3.42	4.43
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	78.8	107	120	108	127	89.8	86.4
Beryllium	hð\ð	4	8	4	4	8	0.27	0.48	0.52	0.53	0.57	0.36	0.27
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	hð\ð	10	22	3 ^{#1,2}	3 #1,2	25 ^{#1,2}	0.399	0.197	0.19	0.165	0.16	0.239	0.379
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	33.6	26.8	31.5	29.8	32.6	24.7	32.1
Cobalt	µg/g	50	300	50	50	300	10.1	8.04	9.23	10.8	12.2	7.31	9.15
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	30.4	24	24	21.1	19.6	30.1	33.5
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	4.27	5.51	5.98	5.67	5.35	8.73	4.48
Lithium	hð\ð	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	13	12.3	14.4	12.8	12.5	11.9	12.6
Manganese	hð\ð	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	353	373	440	471	531	361	373
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	0.071	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	1.37	0.57	0.45	0.84	0.76	0.68	1.13
Nickel	µg/g	45	89	100	100	500	28.3	22.4	24.8	23.1	24.1	19.4	26.7
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð\ð	-	-	47,000 ^{#3}	47,000 #3	100,000 #3	53.8	32.5	37.2	46.5	51.4	26.4	34.6
Thallium	µg/g	1	1	-	-	-	0.15	0.13	0.14	0.13	0.13	0.14	0.16
Tin	µg/g	50	300	50	50	300	0.48	0.49	0.51	0.71	0.7	0.93	0.49
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.689	0.68	0.708	0.951	0.964	0.694	0.552
Vanadium	hð\ð	130	130	200	200	-	48.8	39.3	43.9	46.3	52.9	38.1	47.4
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	60.1	51.1	56.3	66	74.5	54.2	53.4
Laboratory Identification	n Number		1		1		7060116_7060116-10	7060116_7060116-37	7060116_7060116-38	7060116_7060116-33	7060116_7060116-34	7060116_7060116-21	7060116_7060116-22
NOTES:													
#1	CSR Schedule S	5 Substance.											

#2 Standard is pH dependent. Values shown based on median pH of 7.9

CSR Schedule 10 Substance. #3

Not analyzed or no guideline/standard exists. -

Concentration is less than the laboratory detection limit indicated. <

CCME Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10). PL Park Land Standards RL Residential Land Standards CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		0.0115					SA#2	16TP30W1 SA#1	16TP30W1 SA#2	16TP30W2 SA#1	16TP30W2 SA#2	16TP34E1 SA#1	16TP34E1 SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI		0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
i arameter	Onic	Parkland	Commercial		OOK KE	OUN OF	7	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							Dupe #5	16TP30W1 SA#1 D=0.15m	16TP30W1 SA#2 D=0.4m	16TP30W2 SA#1 D=0.15m	16TP30W2 SA#2 D=0.4m	16TP34E1 SA#1 D=0.15m	16TP34E1 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.3	7.9	7.8	7.5	8.5	7.6	7.9
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	0.28	0.47	0.32	0.19	0.11	0.48	0.24
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	4.28	3.96	3.92	2.64	2.12	3.7	2.72
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	100	82.3	117	84.9	97.2	93.5	113
Beryllium	hð\ð	4	8	4	4	8	0.25	0.32	0.48	0.39	0.47	0.32	0.52
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	3	<2	<2	<2
Cadmium	hð\ð	10	22	3 #1,2	3 ^{#1,2}	25 ^{#1,2}	0.335	0.36	0.337	0.2	0.136	0.336	0.201
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	29.6	32.1	35.9	24.4	29.9	23.7	26.7
Cobalt	hð\ð	50	300	50	50	300	8.74	8.79	10.8	7.36	12.9	7.45	8.84
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	28.7	93.5	41.1	28.6	17.8	169	27.8
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	4.94	15.5	8.46	6.83	3.89	19	6.81
Lithium	hð\d	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	11.7	11.9	14.6	10.9	9.3	9.85	13.1
Manganese	hð\d	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	342	370	464	365	583	395	427
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	0.89	1.65	0.97	0.63	0.95	1.75	0.52
Nickel	hð\ð	45	89	100	100	500	25.2	26.1	32	19.3	24	19.8	22.5
Selenium	hð\ð	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	hð\ð	-	-	47,000 ^{#3}	47,000 ^{#3}	100,000 #3	53.1	50.3	32.1	30.2	58.8	34.3	33.1
Thallium	hð\ð	1	1	-	-	-	0.18	0.14	0.18	0.12	0.1	0.11	0.14
Tin	hð\ð	50	300	50	50	300	0.53	1.1	0.77	0.52	0.73	1.11	0.53
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.572	0.744	0.976	0.699	0.71	0.808	0.862
Vanadium	hð\ð	130	130	200	200	-	46.7	43.6	47.8	34.5	56.4	35.7	36.9
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	52	59.9	63.4	47	63.5	59	55.6
Laboratory Identification Nu	ımber						7060116_7060116-AJ	7060116_7060116-29	7060116_7060116-30	7060116_7060116-25	7060116_7060116-26	7060116_7060116-53	7060116_7060116-54
NOTES:													
#1	CSR Schedule 5 S	Substance.											
#2	Standard is pH de	pendent. Values she	own based on media	an pH of 7.9									
#3	CSR Schedule 10	Substance.	aviata										
-	Concentration is le	ss than the laborate	revision limit inc	dicated									
CCME	Canadian Council	of Ministers of the F	Environment (CCME) (Lindated 2015)	oil Quality Guidelin	es for the							
Some	Protection of Envir	onmental and Hum	an Health, for coarse	e soils under Reside	ential/Parkland and	Commercial land							

	Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		00115					16TP34E2 SA#1	16TP34E2 SA#2	16TP34N1 SA#1	16TP34N1 SA#2	16TP34S1 SA#1	16TP34S1 SA#2	16TP34W1 SA#1
Parameter	Unit	CCME - Residential/	CCME -	CSR - PL	CSR - RL	CSR - CL	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m
	•	Parkland	Commercial				5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP34E2 SA#1 D=0.15m	16TP34E2 SA#2 D=0.4m	16TP34N1 SA#1 D=0.15m	16TP34N1 SA#2 D=0.4m	16TP34S1 SA#1 D=0.15m	16TP34S1 SA#2 D=0.4m	16TP34W1 SA#1 D=0.15m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8	7.2	8.3	8.5	8.2	8.5	8.1
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.13	0.1	0.69	0.34	0.67	0.23	0.36
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	1.88	2.01	4.48	4.18	4.01	3.35	4.96
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	92.4	68.8	75.5	123	87.6	107	108
Beryllium	hð\ð	4	8	4	4	8	0.43	0.4	0.24	0.36	0.49	0.36	0.36
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.17	0.133	0.385	0.359	0.399	0.343	0.381
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	18.4	21.5	35.1	41.1	36.7	41.4	31.7
Cobalt	µg/g	50	300	50	50	300	5.96	6.59	8.95	10.8	9.15	10.7	9.23
Copper	μg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	15.5	14.9	106	33.8	94.4	33.1	33.1
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	5.13	4.7	22.8	5.51	16.8	5.27	6.27
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	9.47	10.1	13	15.8	12.4	13.4	14.3
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 #3	381	344	362	399	369	367	416
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	μg/g	10	40	10	10	40	0.38	0.37	1.81	0.84	2.9	0.85	1.18
Nickel	μg/g	45	89	100	100	500	13	15.5	26.9	30.1	29.6	36	24.2
Selenium	μg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	0.72	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47,000 #3	47,000 #3	100,000 #3	29.8	22.3	30.3	41.8	30.7	35.9	33.2
Thallium	µg/g	1	1	-	-	-	<0.1	<0.1	0.15	0.2	0.17	0.18	0.18
Tin	μg/g	50	300	50	50	300	0.42	0.38	3.83	0.49	2.02	0.49	0.53
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.848	0.86	1.32	0.631	0.878	0.667	0.885
Vanadium	µg/g	130	130	200	200	-	29.1	31.2	47.9	52.5	49.2	49.6	52.9
Zinc	μg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	47.3	42.2	58.7	61	63.2	60.5	63
Laboratory Identification	Number						7060116_7060116-49	7060116_7060116-50	7060116_7060116-41	7060116_7060116-42	7060116_7060116-45	7060116_7060116-46	7060116_7060116-61
NOTES:													
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values she	own based on media	an pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or n	o guideline/standard	l exists.										
<	Concentration is I	ess than the laborate	ory detection limit in	dicated.									
CCME	Canadian Counci Protection of Envi use	I of Ministers of the E ironmental and Hum	Environment (CCME an Health, for coars) (Updated 2015). S e soils under Reside	Soil Quality Guidelin ential/Parkland and	es for the Commercial land							
CSP	DC Contominator	Cites Desulation (D	C Dag 275/06 incl		in to D.C. Dog. 104	2016 July 10							

CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.

Most stringent applicable site specific standard is shown.

Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		00115					16TP34W1 SA#2	16TP34W2 SA#1	16TP34W2 SA#2	16TP37E1 SA#1	16TP37E1 SA#2	16TP37E2 SA#1	16TP37E2 SA#2
Parameter	Unit	CCME - Residential/	CCME -	CSR - PI	CSR - RI	CSR - CI	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
r urumotor	onn	Parkland	Commercial				5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP34W1 SA#2 D=0.4m	16TP34W2 SA#1 D=0.15m	16TP34W2 SA#2 D=0.4m	16TP37E1 SA#1 D=0.15m	16TP37E1 SA#2 D=0.4m	16TP37E2 SA#1 D=0.15m	16TP37E2 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.1	7.4	8.1	8.4	8.2	7.4	7.5
Metals				-	-	-							
Antimony	µg/g	20	40	20	20	40	0.36	0.22	0.17	0.36	0.42	0.13	0.15
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	5.13	2.65	3.14	4.41	4.28	2.84	3.31
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	109	107	112	81.7	137	89.5	110
Beryllium	hð\ð	4	8	4	4	8	0.32	0.5	0.53	0.26	0.45	0.43	0.48
Boron_	hð\ð	-	-	-	-	-	<2	2.6	<2	<2	<2	<2	<2
Cadmium	µg/g	10	22	3 #1,2	3 ^{#1,2}	25 ^{#1,2}	0.399	0.173	0.159	0.421	0.448	0.167	0.197
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	37.3	27.2	28.6	31.5	38.7	20.9	27.4
Cobalt	µg/g	50	300	50	50	300	9.92	9.08	9.21	8.76	12.6	7.39	9.21
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	37.3	35.9	24.4	89.9	43.4	22.2	24
Lead	hð\ð	140	260	400 #1,2	400 #1,2	700 #1,2	5.97	9.7	6.71	10.3	10.9	5.21	5.9
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	14.8	14.3	15	12.2	16	9.57	12.8
Manganese	hð\ð	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	428	431	419	361	510	359	404
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	hð\ð	10	40	10	10	40	0.9	0.61	0.39	1.47	1.01	0.47	0.44
Nickel	µg/g	45	89	100	100	500	27	23.4	24.9	26.3	32.8	17.5	23.6
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	0.24	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Strontium	µg/g	-	-	47.000 ^{#3}	47.000 ^{#3}	100.000 #3	38.1	39.9	36.2	50.5	42.3	28	31.9
Thallium	µg/g	1	1	-	-	-	0.19	0.15	0.15	0.14	0.2	0.12	0.15
Tin	µg/g	50	300	50	50	300	0.54	0.74	0.54	0.91	1.06	0.43	0.48
Uranium	µg/g	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.615	0.918	0.877	0.974	0.971	0.896	1.07
Vanadium	µg/g	130	130	200	200	-	57.5	38.1	39	48.2	58.3	33.2	40.6
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	65.6	56.7	54.4	60.6	74.4	45	54.5
Laboratory Identification N	umber						7060116_7060116-62	7060116_7060116-57	7060116_7060116-58	7060116_7060116-85	7060116_7060116-86	7060116_7060116-81	7060116_7060116-82
NOTES:		•					•					<u> </u>	
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sho	own based on media	an pH of 7.9									
#3	CSR Schedule 10	Substance.											
-	Not analyzed or n	o guideline/standard	exists.										
<	Concentration is l	ess than the laborato	bry detection limit in	dicated.									
CCME	Canadian Council Protection of Envi	of Ministers of the E ronmental and Huma	Invironment (CCME) (Updated 2015). S e soils under Reside	Soil Quality Guidelin ential/Parkland and	es for the Commercial land							

use

Site specific factors include: - Intake of contaminated soil.

2016 - Schedules 4, 5 and 10).

Residential Land Standards

Commercial Land Standards

Toxicity to soil invertebrates and plants.Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater aquatic life. Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Park Land Standards

BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19,

CSR

PL

RL

CL

Bold

							16TP37N1 SA#1 16TP37N1 SA#2		SA#2	16TP37S1 SA#1	16TP37S1 SA#2	16TP37W1 SA#1	16TP37W1 SA#2
Parameter	Unit	CCME - Residential/	CCME -				0.15 m	0.4 m	ı	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	Onic	Parkland	Commercial	COK-FL	COR - RE	COR-CL	5/31/2017	5/31/20	17	5/31/2017	5/31/2017	5/31/2017	5/31/2017
							16TP37N1 SA#1 D=0.15m	16TP37N1 SA#2 D=0.4m	Dupe #6	16TP37S1 SA#1 D=0.15m	16TP37S1 SA#2 D=0.4m	16TP37W1 SA#1 D=0.15m	16TP37W1 SA#2 D=0.4m
Physical Parameters				-	-	-							
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.5	8.9	8.9	8.4	8.6	8.3	8
Metals				-	-	-							
Antimony	hð\ð	20	40	20	20	40	0.63	0.16	0.15	0.57	0.29	0.43	0.6
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	4.82	3.38	3.66	4.9	4.66	4.62	5.28
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	151	78.5	69.2	104	103	87.2	103
Beryllium	hð\ð	4	8	4	4	8	0.41	0.3	0.26	0.33	0.33	0.32	0.38
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	<2	<2	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.497	0.433	0.475	0.416	0.353	0.432	0.466
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	48.1	33.6	34.6	32.4	36.2	34.7	34.3
Cobalt	µg/g	50	300	50	50	300	12.6	9.19	9.27	9.75	10.7	9.66	10.5
Copper	μg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	105	30.9	30.8	47.2	44.4	90.4	117
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	15.3	4.04	4.25	11.7	5.77	12.7	17.5
Lithium	μg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	16	12.7	13.6	13.9	14.6	13.1	13.6
Manganese	μg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	454	342	377	433	401	378	441
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	1.63	1.28	1.23	1.26	1.04	1.45	1.61
Nickel	μg/g	45	89	100	100	500	39.4	28.3	30.9	26.5	31.2	29.3	28.8
Selenium	µg∕g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Silver	mg/kg	20	40	20	20	40	0.23	<0.2	<0.2	<0.2	<0.2	<0.2	0.21
Strontium	µg∕g	-	-	47,000 #3	47,000 #3	100,000 #3	58.3	64.9	44.1	38.5	38.9	43.8	38.8
Thallium	hð\ð	1	1	-	-	-	0.23	0.16	0.15	0.18	0.19	0.17	0.17
Tin	µg∕g	50	300	50	50	300	3.22	0.35	0.36	1.3	0.6	1.1	2.14
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.875	0.764	0.778	0.657	0.633	0.651	0.871
Vanadium	hð\ð	130	130	200	200	-	60.9	49.3	50.7	49.3	57	50.3	47.8
Zinc	hð\ð	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	78.2	58.4	62.2	66.3	63.1	67.3	73.8
Laboratory Identification	Number						7060116_7060116-65	7060116_7060116-66	7060116_7060116-AK	7060116_7060116-69	7060116_7060116-70	7060116_7060116-77	7060116_7060116-78
NOTES:						·						·	
#1	CSR Schedule 5	Substance.											
#2	Standard is pH de	ependent. Values sho	own based on media	n pH of 7.9									
#3	CSR Schedule 10) Substance.											
-	Not analyzed or n	o guideline/standard	exists.										
<	Concentration is I	ess than the laborate	ory detection limit inc	licated.									
CCME	Canadian Counci Protection of Env use	I of Ministers of the E ironmental and Huma	Environment (CCME) an Health, for coarse) (Updated 2015). S e soils under Reside	oil Quality Guidelin ential/Parkland and	es for the Commercial land							
CSR	BC Contaminated 2016 - Schedules	d Sites Regulation (B 5 4, 5 and 10).	C Reg. 375/96, inclu	ides amendments u	up to B.C. Reg. 184	/2016, July 19,							
PL	Park Land Standa	ards											
RL	Residential Land	Standards											

- CL Commercial Land Standards Site specific factors include: - Intake of contaminated soil.
 - Toxicity to soil invertebrates and plants.
 - Groundwater used for drinking water.
 - Groundwater flow to surface water used by freshwater aquatic life.
 - Most stringent applicable site specific standard is shown.
 - Bold Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

		CCME - Residential/ Parkland					16TP37W2 SA#1	16TP37W2 SA#2	16TP39E1 SA#1	16TP39E1 SA#2	16TP39E2 SA#1	16TP39E2 SA#2	16TP39N1 SA#1	
Parameter	Unit		CCME -	CSR - PL	CSR - RL	CSR - CL	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	0.4 m	0.15 m	
			Commercial				5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017	
Dhysical Decemptors		-					16TP37W2 SA#1 D=0.15m	16TP37W2 SA#2 D=0.4m	16TP39E1 SA#1 D=0.15m	16TP39E1 SA#2 D=0.4m	16TP39E2 SA#1 D=0.15m	16TP39E2 SA#2 D=0.4m	16TP39N1 SA#1 D=0.15m	
				-	-	-				24	7.0			
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	6.9	7.3	1.1	8.1	7.3	7.3	8.1	
Metals				-	-	-								
Antimony	hð\ð	20	40	20	20	40	0.25	0.18	0.41	0.18	0.14	0.14	0.82	
Arsenic	hð\ð	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	3.72	3.44	4.56	3.18	2.08	2.3	4.91	
Barium	hð\ð	500	2000	400 #1	400 #1	400 #1	106	77.7	133	126	142	71.3	82.4	
Beryllium	µg∕g	4	8	4	4	8	0.61	0.42	0.51	0.49	0.4	0.38	0.26	
Boron_	hð\ð	-	-	-	-	-	<2	<2	<2	<2	2.1	<2	<2	
Cadmium	hð\ð	10	22	3 #1,2	3 #1,2	25 ^{#1,2}	0.167	0.154	0.389	0.223	0.265	0.129	0.468	
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	30.7	29.3	33.1	26.1	16.6	21.9	31.2	
Cobalt	µg/g	50	300	50	50	300	9.94	8.89	11.2	8.52	6.24	6.82	8.69	
Copper	hð\ð	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	37.3	23.4	76.4	23.4	36.6	17.4	108	
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	8.32	5.47	12.5	6.41	7.24	4.34	21.4	
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	13.6	13	14.1	12.7	9.35	8.44	11.5	
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19.000 #3	418	355	507	444	437	335	411	
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 #1	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Molybdenum	µg/g	10	40	10	10	40	0.59	0.45	1.18	0.45	0.56	0.37	1.98	
Nickel	µg/g	45	89	100	100	500	25.7	26.9	27.5	22	12.9	16.4	25.1	
Selenium	µg/g	1	2.9	3	3	10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Silver	mg/kg	20	40	20	20	40	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	
Strontium	µg/g		-	47 000 #3	47 000 #3	100 000 #3	30.8	26.9	39.3	40.8	35.7	25.5	54	
Thallium	µg/g	1	1	-	-	-	0.16	0.14	0.19	0.15	0.1	0.11	0.15	
Tin	hð/ð	50	300	50	50	300	0.67	0.42	1.06	0.56	0.51	0.4	2.46	
Uranium	hð/ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	1.55	0.619	1.03	1.11	1.05	3.83	0.574	
Vanadium	ha/a	130	130	200	200		41.6	40.2	47.6	38.5	26.9	30	46.6	
Zinc	ha/a	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	50.4	48	67.2	58.6	60.6	40.4	62	
Laboratory Identification	Number	200	000	430	430	000	7060116 7060116-73	7060116 7060116-74	7060116_7060116-AF	7060116_7060116-AG	7060116_7060116-AB	7060116_7060116-AC	7060116 7060116-89	
NOTES:									1000110_100011014		1000110_1000110118			
#1	CSR Schedule 5	Substance.												
#2	Standard is pH d	ependent. Values sho	own based on media	an pH of 7.9										
#3	CSR Schedule 1	0 Substance.												
-	Not analyzed or no guideline/standard exists.													
<	Concentration is	less than the laborate	ory detection limit in	dicated.										
CCME	Canadian Counc Protection of Env use	il of Ministers of the E ironmental and Huma	Environment (CCME an Health, for coars	i) (Updated 2015). S e soils under Reside	Soil Quality Guidelin ential/Parkland and	es for the Commercial land								
000			0.0											

CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Mant stringers to a select the site and site strength of the strengt of the strength of the strength of the st

Most stringent applicable site specific standard is shown.

Bold and shaded indicates an exceedance of the CCME guideline or CSR standard Bold

PHASE III ESA, CN RAIL LINE ROW MILE 105.9 TO 106.6 AND MILE 107.0 TO 107.5, DUCK LAKE IR7 FILE: ENV.VENV03191-01 | OCTOBER 2018 | ISSUED FOR REVIEW

							16TP39N1 SA#2	16TP39W1 SA#1	16TP39W1 SA#2	16TP39W2 SA#1	16TP39W2 SA#2
Baramatar	Unit	CCME -	CCME -	CSR - PL	CSR - RL		0.4 m	0.15 m	0.4 m	0.15 m	0.4 m
Farameter	Unit	Parkland	Commercial			COR-CL	5/31/2017	5/31/2017	5/31/2017	5/31/2017	5/31/2017
		T arkiana					16TP39N1 SA#2 D=0.4m	16TP39W1 SA#1 D=0.15m	16TP39W1 SA#2 D=0.4m	16TP39W2 SA#1 D=0.15m	16TP39W2 SA#2 D=0.4m
Physical Parameters				-	-	-					
pH (1:2 H2O Solution)	pH Units	6-8	6-8	-	-	-	8.6	7.8	7.9	7.4	7.8
Metals				-	-	-					
Antimony	µg/g	20	40	20	20	40	0.22	0.68	1.01	0.21	0.2
Arsenic	µg/g	12	12	15 ^{#1}	15 ^{#1}	15 ^{#1}	4.25	5.68	4.56	4.08	3.7
Barium	µg/g	500	2000	400 #1	400 #1	400 #1	91.5	98	106	116	108
Beryllium	µg/g	4	8	4	4	8	0.29	0.32	0.37	0.5	0.46
Boron_	µg/g	-	-	-	-	-	<2	<2	<2	<2	<2
Cadmium	µg/g	10	22	3 ^{#1,2}	3 ^{#1,2}	25 ^{#1,2}	0.402	0.537	0.319	0.219	0.215
Chromium	µg/g	64	87	60 ^{#1}	60 ^{#1}	60 ^{#1}	39.4	36.1	26.7	32.3	30.1
Cobalt	µg/g	50	300	50	50	300	10.9	10.5	9.16	10.1	9.26
Copper	µg/g	63	91	150 ^{#1,2}	150 ^{#1,2}	250 ^{#1,2}	35.5	164	56.8	34.3	27
Lead	µg/g	140	260	400 #1,2	400 #1,2	700 #1,2	4.55	20.8	9.39	7.84	6.24
Lithium	µg/g	-	-	1600 ^{#3}	1600 ^{#3}	20,000 #3	13	12.8	12.1	14.1	13.7
Manganese	µg/g	-	-	1800 ^{#3}	1800 ^{#3}	19,000 ^{#3}	366	402	377	430	428
Mercury	mg/kg	6.6	24	15 ^{#1}	15 ^{#1}	40 ^{#1}	<0.04	<0.04	<0.04	<0.04	<0.04
Molybdenum	µg/g	10	40	10	10	40	1.18	1.96	1.85	0.6	0.63
Nickel	µg/g	45	89	100	100	500	33.2	31.7	26.3	28.4	25.7
Selenium	µg/g	1	2.9	3	3	10	<0.5	0.53	<0.5	<0.5	<0.5
Silver	mg/kg	20	40	20	20	40	<0.2	0.24	0.2	<0.2	<0.2
Strontium	µg/g	-	-	47,000 #3	47,000 #3	100,000 #3	67.2	43.5	31.3	33.7	32.4
Thallium	µg/g	1	1	-	-	-	0.18	0.18	0.15	0.16	0.16
Tin	µg/g	50	300	50	50	300	0.45	1.9	0.81	0.57	0.47
Uranium	hð\ð	23	33	16 ^{#3}	16 ^{#3}	200 #3	0.781	0.818	0.742	0.697	0.684
Vanadium	µg/g	130	130	200	200	-	50.1	49.5	42.8	43.5	43.4
Zinc	µg/g	200	360	450 ^{#1,2}	450 ^{#1,2}	600 ^{#1,2}	60.1	70.4	58	59.3	56.9
Laboratory Identification	Number						7060116_7060116-90	7060116_7060116-97	7060116_7060116-98	7060116_7060116-93	7060116_7060116-94

NOTES:	
#1	CSR Schedule 5 Substance.
#2	Standard is pH dependent. Values shown based on median pH of 7.9
#3	CSR Schedule 10 Substance.
-	Not analyzed or no guideline/standard exists.
<	Concentration is less than the laboratory detection limit indicated.
CCME	Canadian Council of Ministers of the Environment (CCME) (Updated 2015). Soil Quality Guidelines for the Protection of Environmental and Human Health, for coarse soils under Residential/Parkland and Commercial land use
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 184/2016, July 19, 2016 - Schedules 4, 5 and 10).
PL	Park Land Standards
RL	Residential Land Standards
CL	Commercial Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater aquatic life.
	Most stringent applicable site specific standard is shown.
Bold	Bold and shaded indicates an exceedance of the CCME guideline or CSR standard

Table 4: Soil Quality Assurance/Quality Control Analytical Results

			16TP02W1 SA#1			16TP14N1 SA#2			16TP14W1SA#1	DUD #2		16TP22W1SA#1			16TP30S1 SA#2	Dune #5		16TP37N1 SA#2	Dune #6	
Parameter Units I	Units	EQL	- 0.15 m	DOF #1	RPD %	0.4 m	RPD	RPD %	0.15 m	DOF #3	RPD %	0.15 m	DUP #4	RPD %	0.4 m	Dupe #5	RPD %	0.4 m	Dupe #0	RPD %
		5/29/2017	5/29/2017		5/29/2017	5/29/2017		5/30/2017	5/30/2017	5/30/2017	5/30/2017	5/30/2017		5/31/2017	5/31/2017		5/31/2017	5/31/2017	1/2017	
Physical Parameters																				
рН	pH Units	0.1	8	7.9	1	7.7	8	4	7.9	7.8	1	8.2	8.3	1	8.4	8.3	1	8.9	8.9	0
Percentage Solids	%	0.1	96.9	96.2	1	89.9	94	4	97	98.5	2	98.6	97.8	1	95.9	94.4	2	97.1	96.9	0
Metals																				
Antimony	µg/g	0.1	0.66	0.63	5	<0.1	<0.1	-	0.32	0.44	-	0.45	0.41	-	0.23	0.28	-	0.16	0.15	-
Arsenic	µg/g	0.4	3.97	4.08	3	1.34	1.67	-	3.22	3.5	8	4.19	3.9	7	4.43	4.28	3	3.38	3.66	8
Barium	µg/g	1	102	94.1	8	75.1	72.8	3	71.8	91.5	24	85.7	79.9	7	86.4	100	15	78.5	69.2	13
Beryllium	µg/g	0.1	0.37	0.34	-	0.4	0.37	-	0.23	0.23	-	0.21	0.21	-	0.27	0.25	-	0.3	0.26	-
Boron_	µg/g	2	2.3	<2	-	<2	<2	-	<2	<2	0	<2	<2	-	<2	<2	-	<2	<2	-
Cadmium	µg/g	0.04	0.424	0.408	4	0.162	0.158	-	0.354	0.41	15	0.467	0.428	9	0.379	0.335	12	0.433	0.475	9
Chromium	µg/g	1	41	36.5	12	22.9	23.2	1	32.6	32.8	1	32.2	33.8	5	32.1	29.6	8	33.6	34.6	3
Cobalt	µg/g	0.1	12.4	11.6	7	9.72	9.13	6	8.71	9.73	11	9.71	8.96	8	9.15	8.74	5	9.19	9.27	1
Copper	µg/g	0.2	96.8	86.5	11	14.7	15.3	4	87.8	120	31	96.1	84.5	13	33.5	28.7	15	30.9	30.8	0
Lead	µg/g	0.2	15.8	14.1	11	3.16	3.29	4	11.9	14.9	22	13.1	12	9	4.48	4.94	10	4.04	4.25	5
Lithium	µg/g	0.1	14.3	13.3	7	7.63	7.55	1	10.1	8.98	12	10.3	9.89	4	12.6	11.7	7	12.7	13.6	7
Manganese	µg/g	0.4	521	483	8	549	449	20	360	384	6	386	378	2	373	342	9	342	377	10
Mercury	mg/kg	0.04	<0.04	< 0.04	-	<0.04	< 0.04	-	<0.04	< 0.04	-	<0.04	<0.04	-	<0.04	<0.04	-	<0.04	<0.04	-
Molybdenum	µg/g	0.1	1.49	1.46	2	0.92	0.82	11	1.51	1.79	17	1.45	1.33	9	1.13	0.89	24	1.28	1.23	4
Nickel	µg/g	0.4	32.6	30.8	6	17.1	16.5	4	23.8	27.8	16	28.6	26.1	9	26.7	25.2	6	28.3	30.9	9
Selenium	µg/g	0.5	<0.5	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	0.51	<0.5	-	<0.5	<0.5	-	<0.5	<0.5	-
Silver	mg/kg	0.2	<0.2	<0.2	-	<0.2	<0.2	-	0.22	0.21	-	0.23	0.21	-	<0.2	<0.2	-	<0.2	<0.2	-
Strontium	µg/g	0.2	39.6	40.5	2	45.5	45.3	0	28.9	29.2	1	32.6	30.9	5	34.6	53.1	42	64.9	44.1	38
I hallium	µg/g	0.1	0.16	0.14	-	<0.1	<0.1	-	0.13	0.15	-	0.18	0.16	-	0.16	0.18	-	0.16	0.15	-
Tin	µg/g	0.2	1.45	1.31	10	0.5	0.49	-	0.91	1.24	-	1.18	1.13	4	0.49	0.53	-	0.35	0.36	-
Uranium	µg/g	0.05	0.828	0.673	21	0.913	0.856	6	0.758	0.887	16	1.23	0.726	52	0.552	0.572	4	0.764	0.778	2
Vanadium	µg/g	1	57.5	51.8	10	43.1	43.9	2	47.2	45.7	3	45.8	45.9	0	47.4	46.7	1	49.3	50.7	3
Zinc	µg/g	2	/5.6	75.6	0	80.1	67.3	1/	59.5	66	10	61.8	60.6	2	53.4	52	3	58.4	62.2	6
Hydrocarbons	,	100	100	100	-	100	100		100	100					100	100		100	400	
	µg/g	100	<100	<100	-	<100	<100	-	<100	<100	-	-	-	-	<100	<100	-	<100	<100	-
F2-NAPHTHALENE	µg/g	100	<100	<100	-	<100	<100	-	<100	<100	-	-	-	-	<100	<100	-	<100	<100	-
F3 (C16-C34)	µg/g	200	<200	<200	-	<200	<200	-	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
F3-PAH	µg/g	200	<200	<200	-	<200	<200	-	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
F4 (C34-C50)	µg/g	200	<200	<200	-	<200	<200	-	<200	<200	-	-	-	-	<200	<200	-	<200	<200	-
Polycyclic Aromatic Hydrocarbol	ns (PAHS	0.01	0.0000	0.405	04	0.04	0.04		0.454	0.404	40				0.004.4	0.04		0.04	0.04	
B(a)P Total Potency Equivalent	µg/g	0.01	0.0986	0.135	31	<0.01	<0.01	-	0.154	0.181	16				0.0314	<0.01	-	<0.01	<0.01	-
IACR (CCME)	µg/g	0.0625	1.86	2.16	15	<0.0625	<0.0625	-	2.44	3.26	29	-0.01	-0.01		0.139	<0.0625	-	<0.0625	<0.0625	-
	µg/g	0.01	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	<0.01	-	<0.01	0.01	-	<0.01	<0.01	-
Acenaphinene	µg/g	0.005	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	<0.005	-	<0.005	0.007	-	<0.005	<0.005	-
Acenaphinylene	µg/g	0.005	0.013	0.014	-	<0.005	<0.005	-	0.027	0.020	4	0.021	0.024	- 12	<0.005	<0.005	-	<0.005	<0.005	-
Antiliacelle Bonz(a)anthracono	µg/g	0.004	0.039	0.04	3	<0.004	<0.004	-	0.079	0.072	9	0.073	0.005	11	-0.005	<0.004	-	<0.004	<0.004	-
Benze(a)pyropo	µg/g	0.01	0.053	0.030	- 11	<0.01	<0.01	-	0.024	0.020	- 22	0.072	0.00	7	<0.01	<0.01	-	<0.01	<0.01	-
Benzo(b)fluoranthono	µg/g	0.01	0.032	0.079	41	<0.01	<0.01	-	0.009	0.007	10	0.034	0.101	2	<0.01	<0.01	-	<0.01	<0.01	-
Benzo(g h i)pondono	µg/g	0.01	0.131	0.140	16	<0.01	<0.01	-	0.214	0.237	17	0.22	0.215	 11	0.029	<0.01	-	<0.01	<0.01	-
Benzo(k)fluoranthono	µg/g	0.02	0.129	0.151	10	<0.02	<0.02	-	0.004	0.427	0	0.203	0.293	2	-0.01	<0.02	-	<0.02	<0.02	-
Christian	µg/g	0.01	0.033	0.005	0	<0.01	<0.01	-	0.000	0.034	9	0.094	0.092	2 E	<0.01	<0.01	-	<0.01	<0.01	-
Dibenz(a h)anthracene	µg/g	0.01	0.071	0.003	3			-	0.004	0.077	7	0.123	0.123	-	0.01		-			-
Fluoranthene	μ <u>α/α</u>	0.000	0.012	0.013		<0.000	<0.003		0.020	0.020	22	0.02	0.019	32	<0.020	<0.003	-	<0.000	<0.003	-
Fluorene	P9/9	0.01	<0.004	<0.043	-	<0.01	<0.01		<0.103	<0.004		<0.01	<0.01	- 52	<0.01	<0.01	_	<0.01	<0.01	
Indeno(1.2.3-c.d)pyrepe	<u>µg/g</u>	0.07	0.062	0.083	-	<0.01	<0.01	_	0.186	0 171	8	0.118	0 117	1	0.028	<0.01	_	<0.01	<0.01	-
Nanhthalene	<u>P9/9</u>	0.02	<0.002	<0.000	-	<0.02	<0.02		<0.100	<0.01		<0.01	<0.01	-	<0.020	<0.02	-	<0.02	<0.02	
Phenanthrene	P9/9	0.02	<0.01	<0.01	-	<0.01	<0.01		0.027	0.02		0.026	0.022	_	<0.01	<0.07	_	<0.01	<0.01	-
Pyrene	<u>µg/g</u>	0.02	0.02	0.02	-	<0.02	<0.02	_	0.027	0.02		0.020	0.022	0	<0.02	<0.02	_	<0.02	<0.02	-
Laboratory Sample ID	P9/9	0.02	7052353	7052353	-	7052353	7052353	-	7052560	7052560		7052560	7052560	0	7060116	7060116	-	7060116	7060116	-
Lassiatory sample in			1002000	1002000	L	1032333	1002000	1	1002000	1002000		1032000	1002000		7000110	1000110		7000110	1000110	

NOTES:

- Not analyzed or RPD not calculated.

< Concentration is less than the laboratory detection limit indicated.

RDL Laboratory Reportable Detection Limit

RPD RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.

RPDs have only been considered where a concentration is greater than 5 times the RDL

BOLD High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual). High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Parameter	Unit	CDWC	FICOC AW	16TP14E1 SA#1	16TP34E1 SA#1	16TP39N1 SA#1 0.15 m	
	Unit	CDWG	FIGQG AW	0.15 m	0.15 m		
				5/29/2017	5/29/2017	5/29/2017	
Leachate Metals							
Copper µg/L		1000	2	<0.10	<0.10	<0.10	
Laboratory Identif	ication Nu	nber		7052560-13	7060116-53	7060116-89	

Table 3: Leachable Copper in Soil

NOTES:

Leachable copper concentration measured by synthetic precipitation leaching procedure

< Concentration is less than the laboratory detection limit indicated.

CDWG Canadian Drinking Water Guideline is an aesthetic objective only

FIGQG Federal Interim Groundwater Quality Guidelines (June 16, Verision 4) for protection of aquatic life for residential, commercial, and industrial land uses.

Q:\Vancouver\Drafting\Ervironmenta\VENWWVENW03093-01\ENW.VENW03093-01 PAH Sections R0a.dwg [FIGURE 5] December 20. 2017 - 9:59:42 am (BY: HALL, ROBERT J)

2:Nancouver/Drafting/Environmental/VENW/VENW03093-01/ENW/VENW03093-01 PAH Sections R0a.dwg [FIGURE 6] December 20, 2017 - 9:59:47 am (BY: HALL, ROBERT J)

Q:IVancouverDrafting[EnvironmentaIVENWENW.VENW03093-01/ENW.VENW03093-01 PAH Sections R0a.dwg [FIGURE 10] December 20, 2017 - 10:30:37 an (BY: HALL, ROBERT J)

2:NanoouverDrafting/Environmental/VENW/VENW03093-01/ENW/VENW03093-01 Copper Sections R0a dwg [FIGURE 17] December 20, 2017 - 10:00:42 am (BY: HALL, ROBERT J)

Q:\Vancouver\Drafting\Ervironmenta\\VENWW.VENWW.VENWW3093-01\ENW.VENW03093-01 Copper Sections R0a dwg [FIGURE 21] December 20, 2017 - 10:01:02 am (BY: HALL, ROBERT J)

Q:\Vancouver\Drafting\Ervironmenta\\VENWW.VENWW.VENWW3093-01\ENW.VENW03093-01 Copper Sections R0a dwg [FIGURE 22] December 20, 2017 - 10:01:07 am (BY: HALL, ROBERT J)

APPENDIX B GROUNDWATER QUALITY INVESTIGATION

BOREHOLE DRILLING AND MONITORING WELL INSTALLATION

On March 24 and 25, 2018, four boreholes (18MW101 to 18MW04) were advanced along the Canadian National (CN) rail way right-of-way (RoW) that lies within the boundaries of the Duck Lake Indian Reserve (IR) 7 located near the northern limits of Kelowna, BC; specifically, CN Mile 105.9 to 106.6 and Mile 107.0 to 107.5. The boreholes were drilled using a truck-mounted ODEX drill rig supplied and operated by Mud Bay Drilling Co. Ltd., and were advanced to depths ranging from 4.27 mbgs to 13.72 mbgs.

During drilling, soil stratigraphy was logged based on the observations of the cuttings blown out between the outer casing and the inner hammer rod. No soil samples were collected for analyses. Borehole logs are attached.

The installation of groundwater monitoring wells Nos. 18MW01, 18MW02, 18MW03, and 18MW04 was completed by Mud Bay at the borehole locations as instructed by Tetra Tech. Monitoring wells were installed immediately following drilling. The monitoring wells were installed to depths ranging from 3.5 m to 10.55 m bgs. Monitoring wells were constructed using 50 mm diameter, screw-jointed Schedule 40 polyvinyl chloride casing, which was factory washed and bagged to prevent contamination prior to use at the site. A 1.52 m long well screen was constructed using a length of machine-slotted screen (0.010 inch openings) below unslotted riser pipe. The screens were surrounded by a silica sand filter pack where native soils had not sloughed in around the screen. The silica sand filter pack extended to approximately 0.3 m above the top of the screen. Bentonite pellets were placed above the sand, as per the attached borehole logs. Each monitoring well was topped with approximately 0.5 m of silica sand, 0.3 m of cement, and completed with a flush-mounted monument. The locations of the monitoring wells are shown on Figure B-1.

WELL DEVELOPMENT, PURGING, AND SAMPLING

Tetra Tech developed the four installed groundwater monitoring wells to remove water and sediment introduced during the drilling and well installation process, and to improve the hydraulic connection with the surrounding aquifer material. On April 10, 2018, the groundwater wells were monitored and developed as follows:

- Total well depth and depth to groundwater (measured from the top of well casing) was measured within each monitoring well to determine the volume of water within the well; and
- Monitoring wells were developed by removing at least six well volumes of water, or until purged dry at least six times, or until groundwater was running clear using a dedicated High-Density Polyethylene (HDPE) tubing attached to a four-stage submersible pump.

Table 2-2 below provides specific development details for each groundwater monitoring well.

Monitoring Well	Approximate Well Volumes / Litres of Groundwater Removed During Well Development (April 10, 2018)	Screen Depth (mbgs)	Method	Notes
18MW01	4.24 volumes / 77.4 L	9.03 – 10.55	HDPE Tubing with a submersible pump	 Well volume prior to development was 4.24 L. Very good recharge. High turbidity at the beginning, clearing by the end of development. No noticeable hydrocarbon odour or visible sheen was noted.

Table 2-2: Well Development Details for Groundwater Wells

Monitoring Well	Approximate Well Volumes / Litres of Groundwater Removed During Well Development (April 10, 2018)	Screen Depth (mbgs)	Method	Notes
18MW02	2.29 volumes / 150 L	8.85 – 10.27	HDPE Tubing with a submersible pump	 Well volume prior to development was 2.29 L. Very good recharge. High turbidity at the beginning, clearing by the end of development. No noticeable hydrocarbon odour or visible sheen was noted.
18MW03	4.43 volumes / 158 L	1.9 – 3.5	HDPE Tubing with a submersible pump	 Well volume prior to development was 4.43 L. Very good recharge. High turbidity at the beginning, clearing by the end of development. No noticeable hydrocarbon odour or visible sheen was noted.
18MW04	4.2 volumes / 150 L	8.83 – 10.35	HDPE Tubing with a submersible pump	 Well volume prior to development was 4.2 L. Very good recharge. High turbidity at the beginning, clearing by the end of development. No noticeable hydrocarbon odour or visible sheen was noted.

Table 2-2: Well Development Details for Groundwater Wells

WELL PURGING AND GROUNDWATER SAMPLING

Following well developing, two groundwater purging and sampling events were completed on April 12, 2018, and June 16, 2018, the wells were purged before sampling using a low-flow sampling technique. The low-flow sampling technique was carried out by inserting new 6.3 mm (0.25 inch) diameter high-density polyethylene (HDPE) tubing into each well with its intake at the calculated saturated interval midpoint, or at the midpoint of the well screen if the water level in the well is above the screen depth. Water is then purged from each well at a rate not exceeding 100 mL/min using a peristaltic pump. The depth to groundwater was monitored in the well during purging to confirm that the purging rate was sufficiently low and that the static elevation of groundwater in the well was not appreciably drawn down during purging and sampling. The low flow sampling technique helps to ensure the properties of the water being sampled are representative of the water in the formation around the well.

Physical parameters of the purged groundwater (i.e., temperature, pH, and electrical conductivity (EC), are measured during purging. The wells were sampled when all these physical parameters stabilized within 10% and the water level decreased by less than 0.1 m for three consecutive readings during purging.

Tetra Tech followed its standard QA/QC procedures during sampling to obtain representative groundwater samples and to minimize the potential for cross contamination. Groundwater samples were collected and submitted to CARO Analytical Services for analysis of PAHs and dissolved copper. Samples collected for PAH analyses were preserved in the field using laboratory supplied and measured aliquots of sodium bisulfate. Samples collected for dissolved copper analysis were field filtered and preserved with nitric acid supplied by the laboratory. Samples for PAHs were collected into one laboratory supplied 250 mL amber glass bottles with Teflon-lined caps. Dissolved copper samples were collect in one laboratory supplied 100 mL acid washed plastic bottle.

2

Groundwater samples were placed into new, clean, and labelled sample bottles supplied by CARO Analytical Services. The groundwater samples were stored in ice-chilled coolers, and submitted in-person to CARO Analytical Services using chain-of-custody procedures.

RISK ASSESSMENT - GROUNDWATER INVESTIGATION FILE: ENW.VENW03093-02 |OCTOBER 2018 | ISSUED FOR REVIEW

Monitoring Well	Easting (m)	Northing (m)	Depth to Ground	water (m-btoc) ⁽¹⁾
			12-Apr-18	6-Jun-18
18MW01	328170	5543538	8.43	7.48
18MW02	328313	5542984	9.22	8.98
18MW03	328784	5541894	1.29	1.69
18MW04	328929	55431269	8.25	7.80

Table 1: Depths to Groundwater

NOTES

⁽¹⁾ m-btoc indicates metres below top of PVC casing.

		Field ID	18MW01	Dup #1		18MW01	DUP#2	
		Sample Date	12-Apr-2018	12-Apr-2018	RPD (%)	6-Jun-2018	6-Jun-2018	RPD (%)
	Laborato	ory Report Number	8041171	8041171		8060739	8060739	
	Lab	oratory Sample ID	8041171-01	8041171-05	1	8060739-01	8060739-05	
Parameter	Unit	RDL						
Dissolved Metals								
Copper	µg/L	0.4	0.42	0.46	-	4.59	5.22	13
Polycyclic Aromatic Hydrocarbons (PAHs)								
Acenaphthene	μg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Acenaphthylene	µg/L	0.2	<0.20	<0.20	-	<0.20	<0.20	-
Acridine	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Anthracene	µg/L	0.01	<0.010	<0.010	-	<0.010	<0.010	-
Benz(a)anthracene	µg/L	0.01	<0.010	<0.010	-	<0.010	<0.010	-
Benzo(a)pyrene	µg/L	0.01	<0.010	<0.010	-	<0.010	<0.010	-
Benzo(b+j)fluoranthene	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Benzo(g,h,i)perylene	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Benzo(k)fluoranthene	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
2-Chloronaphthalene	µg/L	0.1	<0.10	<0.10	-	<0.10	<0.10	-
Chrysene	μg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Dibenz(a,h)anthracene	µg/L	0.01	<0.010	0.017	-	<0.010	<0.010	-
Fluoranthene	µg/L	0.03	<0.030	<0.030	-	<0.030	<0.030	-
Fluorene	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
Indeno(1,2,3-c,d)pyrene	µg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-
1-Methylnaphthalene	µg/L	0.1	<0.10	<0.10	-	<0.10	<0.10	-
2-Methylnaphthalene	µg/L	0.1	<0.10	<0.10	-	<0.10	<0.10	-
Naphthalene	μg/L	0.2	<0.20	<0.20	-	<0.20	<0.20	-
Phenanthrene	μg/L	0.1	<0.10	<0.10	-	<0.10	<0.10	-
Pyrene	μg/L	0.02	<0.020	<0.020	-	<0.020	<0.020	-
Quinoline	μg/L	0.05	<0.050	<0.050	-	<0.050	<0.050	-

Table 3: Groundwater Quality Assurance/Quality Control Analytical Results

Notes:

RDL - Reportable detection limit

RPD - Relative percent difference calculated as (abs(C1-C2)/average(C1+C2))*100

"-" Indicates RPD not calculated. RPD cannot be calculated if one or more of the analytical results are less than detection limits or within 5 times the detection limits.

BOLD - RPD value greater than 30%

Table 2: Groundwater Analytical Results

						Location		18M	W01		18M	W 02	18M	W03	18M	W04
						Field ID	18MW01	Dup #1	18MW01	DUP#2	18MW02	18MW 02	18MW 03	18MW03	18MW 04	18MW 04
						Sample Date	12-Apr-2018	12-Apr-2018	6-Jun-2018	6-Jun-2018	13-Apr-2018	6-Jun-2018	12-Apr-2018	6-Jun-2018	12-Apr-2018	6-Jun-2018
					Laborato	ry Report Number	8041171	8041171	8060739	8060739	8041171	8060739	8041171	8060739	8041171	8060739
					Lab	oratory Sample ID	8041171-01	8041171-05	8060739-01	8060739-05	8041171-02	8060739-02	8041171-03	8060739-03	8041171-04	8060739-04
Parameter	Unit	Canadian Dr	inking Water ¹	EIGOG ²	BC 0	CSR ³										
- ununctai	onit	MAC	Other	nogo	Fresh AW	DW										
Dissolved Metals																
Copper	µg/L	-	1000	24	20 4	1500	0.42	0.46	4.59	5.22	0.66	0.69	1.75	0.99	1.37	1.36
Polycyclic Aromatic Hydrocarbons (PAHs)																
Acenaphthene	µg/L	-	-	5.8	60	250	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acenaphthylene	µg/L	-	-	46	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acridine	µg/L	-	-	0.05	0.5	-	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	µg/L	-	-	0.012	1	1000	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benz(a)anthracene	µg/L	-		0.018	1	0.07	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	µg/L	0.04	-	0.015	0.1	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b+j)fluoranthene	µg/L	-		0.48	-	0.07	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Benzo(g,h,i)perylene	µg/L	-	-	0.17	-	-	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Benzo(k)fluoranthene	µg/L	-	-	0.48	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
2-Chloronaphthalene	µg/L	-			-	300	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	µg/L	-		1.4	1	7	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Dibenz(a,h)anthracene	µg/L	-	-	0.26	-	0.01	<0.010	0.017	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Fluoranthene	µg/L	-		0.04	2	150	< 0.030	< 0.030	<0.030	< 0.030	<0.030	< 0.030	<0.030	< 0.030	<0.030	< 0.030
Fluorene	µg/L	-	-	3	120	150	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Indeno(1,2,3-c,d)pyrene	µg/L	-	-	0.21	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
1-Methylnaphthalene	µg/L	-	-	180	-	5.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	µg/L	-	-	180	-	15	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Naphthalene	µg/L	-	-	1.1	10	80	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	µg/L	-	-	0.4	3	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	µg/L	-	-	0.025	0.2	100	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Quinoline	µg/L	-	-	3.4	34	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Notes:

1 Health Canada Federal-Provincial-Territorial Committee on Drinking Water (February 2017). Guidelines for Canadian Drinking Water Quality Summary Table (GCDWQ)

MAC refers to the Maximum Acceptable Concentration according to the GCDWQ criteria.

Other Value refers to the aesthetic objectives or operational guidance values according to the GCDWQ criteria.

² Environment Canada (November 2015). Guidance Document on Federal Interim Groundwater Quality Guidelines (FIGQG) for Federal Contaminated Sites, Tier 2 Freshwater Life pathway only, fine and coarse soil type, most conservative value shown

³ BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 253/2016, November 1, 2017) Schedule 3.2 Generic Numerical Water Standards for Freshwater Aquatic Life (AW) and Drinking Water (DW)

Contraining to other regulation (Do reg. or prov. includes anientation of Guideline/standard varies with hardness. Most conservative value applied ** No applicable guideline
 BOLD - Greater than GCDWQ, FIGQG, or CSR Guideline

			Borehole No: 18MW	01				
C)k	anagan Indian Band	Project: Risk Assessment - GW Investigation	F	Projec	t No: ENW.VENW03093-02		
			Location: CN ROW, Mile 105.9 - 106.6 and 107.0 - 108.5					
			Kelowna, British Columbia					
Depth (m)	Method	Des	Soil scription	Sample Type	Sample Number	Notes and Comments	18MW01	Depth (ft)
		TOPSOIL				Road box and cement		
L L L L L L		SAND - trace silt, dry, medium brown, fine sand, no visi	ble staining, no discernible hydrocarbon odour					2 2 4
		SAND AND GRAVEL - trace sit, dry, medium brown, no	visible staining, no discernible hydrocarbon odour					6-
								8
3					SA1		<u>`•</u> <u>`</u> •	10-
4		GRAVEL - sandy, trace silt, dry, light to medium brown,	no visible staining, no discernible hydrocarbon odour					14
5								16
6	auger				SA2			20-
7	Solid stem a							22
8		- occasional cobble						26- 28-
9		- some silt			SA3		• • • • • •	30-
10								32 34
11							<u>.*</u> *	36
12					SA4			38-
13								42-
		END OF BOREHOLE (13.72 metros)						44
- 14 		slough - 10.67 metres Monitoring well installed to 10.67 metres						46
- 15								40
			Contractor: Mud Bay Drilling Ltd.	0	Comp	letion Depth: 13.72 m		
	7	TETRA TECH	Drilling Rig Type: Truck mounted	5	Start [Date: 2018 March 24		
			Logged By: CC		Jomp Dago	letion Date: 2018 March 24	2	85
				F	aye		5	~ 5

	Borehole No:				2			
6	٦k	anagan Indian Rand	Project: Risk Assessment - GW Investigation		Proiec	1 No. ENW VENW03093-02		
	JN	anayan mulan banu	Legation: CN POW/ Mile 105.9, 106.6 and 107.0, 108.6		Tiojec	STNO. LINN. VEINNUUUUUUUUUU		
			Location. CN ROW, Mile 105.9 - 100.0 and 107.0 - 108.2	,				
	_		Kelowna, British Columbia					1
Depth (m)	Method	Des	Soil scription	Sample Type	Sample Number	Notes and Comments	18MW02	Depth (ft)
E		TOPSOIL				Road box and cement		
2 1 2 2 3 4	er	SAND - trace silt, dry, loose to compact, medium brown	, fine sand, no visible staining, no discernible hydrocarbon odour		SA1			2
5 7 8	Solid stem auge	SAND AND GRAVEL - trace silt, dry, compact, light to r odour	nedium brown, no visible staining, no discernible hydrocarbon		SA2			20-10-10-10-10-10-10-10-10-10-10-10-10-10
9 1 1 1 10		- moist to wet			SA3			30 30 32 32 34
11 12 12 12 12		END OF BOREHOLE (10.67 metres) Monitoring well installed to 10.67 metres						
								40 42 42
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								44 46 46 48
- 15			Our for short Mud Day, D. 197	<u> </u>		lation Danti 40.07		
			Contractor: Mud Bay Drilling Ltd.	-	Comp	letion Depth: 10.67 m		
		TETRA TECH	Drilling Rig Type: Truck mounted		Start [Date: 2018 March 24		
		•]	Logged By: CC		Comp	letion Date: 2018 March 24		06
			Reviewed By: DW		Page	1 of 1	- 3	00

			Borehole No: 18MW	0	3			
C)k	anagan Indian Band	Project: Risk Assessment - GW Investigation		Projec	ct No: ENW.VENW03093-02		
			Location: CN ROW, Mile 105.9 - 106.6 and 107.0 - 108.	5				
			Kelowna, British Columbia					
Depth (m)	Method	Des	Soil scription	Sample Type	Sample Number	Notes and Comments	18MW03	Depth (ft)
0 -		SAND AND GRAVEL - trace silt, dry, compact, medium	brown, no visible staining, no discernible hydrocarbon odour			Road box and cement		0
								2
2	Solid stem auger	SAND - some silt to silty, trace gravel, moist, compact, r odour - wet	medium brown, no visible staining, no discernible hydrocarbon		SA1		• • • • • • • • •	4 4 6 8 8 10
5 6 7		END OF BOREHOLE (4.27 metres) Monitoring well installed to 4.27 metres						12
9								24 26 28 28 30 30
10								32
12								40 40 42 42
14								44 46 46 48
15	-		Contractor: Mud Bay Drilling Ltd.		Comp	letion Depth: 4.27 m		
			Drilling Rig Type: Truck mounted		Start I	Date: 2018 March 24		
	lt		Logged By: CC		Comp	letion Date: 2018 March 24		
			Reviewed By: DW		Page	1 of 1	3	87

			Borehole No: 18MW	04	4			
6)k	anagan Indian Band	Project: Risk Assessment - GW Investigation		Proied	zt No: ENW.VENW03093-02		
	<i>/</i> //	anagan malan bana	Location: CN ROW Mile 105.9 - 106.6 and 107.0 - 108.5	;	110,00			
			Kelowna British Columbia	-				
Depth (m)	Method	Des	Soil scription	Sample Type	Sample Number	Notes and Comments	18MW04	Depth (ft)
Ē		SAND AND GRAVEL - trace silt, dry, compact, medium	brown, no visible staining, no discernible hydrocarbon odour			Road box and cement		
2 2 3 4 5	i auger	SAND - some gravel, trace silt, dry, compact, medium b	rown, no visible staining, no discernible hydrocarbon odour		SA1			2- 4
	Solid stem	- moist, light brown			SA2		• • • • • • • • • • • •	20
10								32 32 34
11		END OF BOREHOLE (10.67 metres) water - 9.14 metres Monitoring well installed to 10.36 metres						36 37 38
- 12 								40 40
13								42
14 								46
- 15		<u> </u>	Contractor: Mud Bay Drilling Ltd.		L Comn	letion Depth: 10.67 m		
			Drilling Rig Type: Truck mounted	\neg	Start I	Date: 2018 March 25		
	ſt	I LEIRA IECH	Logged By: CC		Comn	letion Date: 2018 March 25		
			Reviewed By: DW		Page	1 of 1	38	38

CERTIFICATE OF ANALYSIS

REPORTED TO	Tetra Tech EBA Inc. (Kelowna) 150 - 1715 Dickson Ave. Kelowna, BC V1Y 9G6		
ATTENTION	Chris Chu	WORK ORDER	8041171
PO NUMBER PROJECT PROJECT INFO	704-ENW.VENW03093-02	RECEIVED / TEMP REPORTED COC NUMBER	2018-04-13 11:50 / 6°C 2018-04-20 13:12 B59081

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

We've Got Chemistry

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

32

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre the for technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at jnobrega@caro.ca

Authorized By:

Jessica Nobrega, B.Sc. Client Service Manager

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7

Caring About Results, Obviously.

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

Analyte	Result	RL Units	Analyzed Qualifi
	Vater Sampled: 2018-04-12 15:36		
Dissolved Metals			
Copper, dissolved	0.00042	0.00040 mg/L	2018-04-19

Polycyclic Aromatic Hydrocarbons (PA	<i>٩Н)</i>			
Acenaphthene	< 0.050	0.050 µg/L	2018-04-20	
Acenaphthylene	< 0.200	0.200 µg/L	2018-04-20	
Acridine	< 0.050	0.050 µg/L	2018-04-20	
Anthracene	< 0.010	0.010 µg/L	2018-04-20	
Benz(a)anthracene	< 0.010	0.010 µg/L	2018-04-20	
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-04-20	
Benzo(b+j)fluoranthene	< 0.050	0.050 μg/L	2018-04-20	
Benzo(g,h,i)perylene	< 0.050	0.050 μg/L	2018-04-20	
Benzo(k)fluoranthene	< 0.050	0.050 μg/L	2018-04-20	
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-04-20	
Chrysene	< 0.050	0.050 µg/L	2018-04-20	
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L	2018-04-20	
Fluoranthene	< 0.030	0.030 µg/L	2018-04-20	
Fluorene	< 0.050	0.050 µg/L	2018-04-20	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L	2018-04-20	
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20	
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20	
Naphthalene	< 0.200	0.200 µg/L	2018-04-20	
Phenanthrene	< 0.100	0.100 µg/L	2018-04-20	
Pyrene	< 0.020	0.020 µg/L	2018-04-20	
Quinoline	< 0.050	0.050 µg/L	2018-04-20	
Surrogate: Acridine-d9	71	50-140 %	2018-04-20	
Surrogate: Naphthalene-d8	85	50-140 %	2018-04-20	
Surrogate [·] Pervlene-d12	92	50-140 %	2018-04-20	

18MW02 (8041171-02) | Matrix: Water | Sampled: 2018-04-13 11:17

Dissolved Metals

Copper, dissolved	0.00066	0.00040 mg/L	2018-04-19	
Polycyclic Aromatic Hydrocarbons (P	AH)			
Acenaphthene	< 0.050	0.050 µg/L	2018-04-20	
Acenaphthylene	< 0.200	0.200 µg/L	2018-04-20	
Acridine	< 0.050	0.050 µg/L	2018-04-20	
Anthracene	< 0.010	0.010 µg/L	2018-04-20	
Benz(a)anthracene	< 0.010	0.010 µg/L	2018-04-20	
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-04-20	
Benzo(b+j)fluoranthene	< 0.050	0.050 μg/L	2018-04-20	
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L	2018-04-20	
Benzo(k)fluoranthene	< 0.050	0.050 µg/L	2018-04-20	
				200

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

Analyte	Result	RL Units	Analyzed	Qualifier
18MW02 (8041171-02) Matrix: Wa	ter Sampled: 2018-04-13 11:17, Co	ntinued		
Polycyclic Aromatic Hydrocarbons (P	AH), Continued			
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-04-20	
Chrysene	< 0.050	0.050 µg/L	2018-04-20	
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L	2018-04-20	
Eluoranthono	< 0.030	0.030 ug/	2018 04 20	

WORK ORDER

REPORTED

8041171

2018-04-20 13:12

8

Fluoranthene	< 0.030	0.030 µg/L	2018-04-20	
Fluorene	< 0.050	0.050 µg/L	2018-04-20	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L	2018-04-20	
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20	
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20	
Naphthalene	< 0.200	0.200 µg/L	2018-04-20	
Phenanthrene	< 0.100	0.100 µg/L	2018-04-20	
Pyrene	< 0.020	0.020 µg/L	2018-04-20	
Quinoline	< 0.050	0.050 µg/L	2018-04-20	
Surrogate: Acridine-d9	68	50-140 %	2018-04-20	
Surrogate: Naphthalene-d8	89	50-140 %	2018-04-20	
Surrogate: Perylene-d12	96	50-140 %	2018-04-20	

18MW03 (8041171-03) | Matrix: Water | Sampled: 2018-04-12 17:22

Disso	lved	Metals

Copper, dissolved	0.00175	0.00040	mg/L 2018-04-19	
Polycyclic Aromatic Hydrocarbons (F	PAH)			
Acenaphthene	< 0.050	0.050	μg/L 2018-04-20	
Acenaphthylene	< 0.200	0.200	μg/L 2018-04-20	
Acridine	< 0.050	0.050	μg/L 2018-04-20	
Anthracene	< 0.010	0.010	μg/L 2018-04-20	
Benz(a)anthracene	< 0.010	0.010	μg/L 2018-04-20	
Benzo(a)pyrene	< 0.010	0.010	μg/L 2018-04-20	
Benzo(b+j)fluoranthene	< 0.050	0.050	μg/L 2018-04-20	
Benzo(g,h,i)perylene	< 0.050	0.050	μg/L 2018-04-20	
Benzo(k)fluoranthene	< 0.050	0.050	μg/L 2018-04-20	
2-Chloronaphthalene	< 0.100	0.100	μg/L 2018-04-20	
Chrysene	< 0.050	0.050	μg/L 2018-04-20	
Dibenz(a,h)anthracene	< 0.010	0.010	μg/L 2018-04-20	
Fluoranthene	< 0.030	0.030	μg/L 2018-04-20	
Fluorene	< 0.050	0.050	μg/L 2018-04-20	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	μg/L 2018-04-20	
1-Methylnaphthalene	< 0.100	0.100	μg/L 2018-04-20	
2-Methylnaphthalene	< 0.100	0.100	μg/L 2018-04-20	
Naphthalene	< 0.200	0.200	μg/L 2018-04-20	
Phenanthrene	< 0.100	0.100	μg/L 2018-04-20	
Pyrene	< 0.020	0.020	µg/L 2018-04-20	
Quinoline	< 0.050	0.050	µg/L 2018-04-20	201
	Caring About Posult			22 ¹ 22

REPORTED TO PROJECT	Tetra Tech EBA In 704-ENW.VENW0	c. (Kelowna) 3093-02		WORK ORDER REPORTED	8041171 2018-04-2	0 13:12
Analyte		Result	RL	Units	Analyzed	Qualifier
18MW03 (804117	'1-03) Matrix: Wate	r Sampled: 2018-04-12 17:22, C	ontinued			
Polycyclic Aromat	tic Hydrocarbons (PAI	l), Continued				
Surrogate: Acridir	ne-d9	72	50-140	%	2018-04-20	
Surrogate: Napht	halene-d8	90	50-140	%	2018-04-20	
Surrogate: Peryle	ene-d12	91	50-140	%	2018-04-20	
Dissolved Metals						
Copper, dissolved	t	0.00137	0.00040	mg/L	2018-04-19	
Polycyclic Aromat	tic Hydrocarbons (PAI	ł)				
Acenaphthene		< 0.050	0.050	μg/L	2018-04-20	
Acenaphthylene		< 0.200	0.200	µg/L	2018-04-20	
Acridine		< 0.050	0.050	µg/L	2018-04-20	
Anthracene		< 0.010	0.010	µg/L	2018-04-20	
Benz(a)anthracer	ne	< 0.010	0.010	µg/L	2018-04-20	
Benzo(a)pyrene		< 0.010	0.010	µg/L	2018-04-20	
Benzo(b+j)fluorar	nthene	< 0.050	0.050	µg/L	2018-04-20	
Devene (e. l. Devend		0.050	0.050	0	0010 01 00	

())			
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L	2018-04-20
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L	2018-04-20
Benzo(k)fluoranthene	< 0.050	0.050 µg/L	2018-04-20
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-04-20
Chrysene	< 0.050	0.050 µg/L	2018-04-20
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L	2018-04-20
Fluoranthene	< 0.030	0.030 µg/L	2018-04-20
Fluorene	< 0.050	0.050 µg/L	2018-04-20
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L	2018-04-20
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20
Naphthalene	< 0.200	0.200 µg/L	2018-04-20
Phenanthrene	< 0.100	0.100 µg/L	2018-04-20
Pyrene	< 0.020	0.020 µg/L	2018-04-20
Quinoline	< 0.050	0.050 µg/L	2018-04-20
Surrogate: Acridine-d9	73	50-140 %	2018-04-20
Surrogate: Naphthalene-d8	92	50-140 %	2018-04-20
Surrogate: Perylene-d12	93	50-140 %	2018-04-20

Dup #1 (8041171-05) | Matrix: Water | Sampled: 2018-04-12 15:40

Dissolved Metals				
Copper, dissolved	0.00046	0.00040 mg/L	2018-04-19	_
Polycyclic Aromatic Hydrocarbo	ons (PAH)			
Acenaphthene	< 0.050	0.050 µg/L	2018-04-20	
Acenaphthylene	< 0.200	0.200 µg/L	2018-04-20	
	Caring About Results, O	bviously.	Page 4 of	

REPORTED TO PROJECT	Tetra Tech EBA Inc. (Kelowna) 704-ENW.VENW03093-02			WORK ORDER REPORTED	8041171 2018-04-2	0 13:12
Analyte	Resu	ılt	RL	Units	Analyzed	Qualifier
Dup #1 (8041171	-05) Matrix: Water Sampled: 2018-	04-12 15:40, Continued				
Polycyclic Aromat	ic Hydrocarbons (PAH), Continued					
Acridine	< 0.0	950	0.050	µg/L	2018-04-20	
Anthracene	< 0.0)10	0.010	µg/L	2018-04-20	
Benz(a)anthracer	ne < 0.0)10	0.010	ua/L	2018-04-20	

Benz(a)anthracene	< 0.010	0.010 μg/L	2018-04-20
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-04-20
Benzo(b+j)fluoranthene	< 0.050	0.050 μg/L	2018-04-20
Benzo(g,h,i)perylene	< 0.050	0.050 μg/L	2018-04-20
Benzo(k)fluoranthene	< 0.050	0.050 μg/L	2018-04-20
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-04-20
Chrysene	< 0.050	0.050 μg/L	2018-04-20
Dibenz(a,h)anthracene	0.017	0.010 µg/L	2018-04-20
Fluoranthene	< 0.030	0.030 µg/L	2018-04-20
Fluorene	< 0.050	0.050 μg/L	2018-04-20
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 μg/L	2018-04-20
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-04-20
Naphthalene	< 0.200	0.200 µg/L	2018-04-20
Phenanthrene	< 0.100	0.100 µg/L	2018-04-20
Pyrene	< 0.020	0.020 µg/L	2018-04-20
Quinoline	< 0.050	0.050 μg/L	2018-04-20
Surrogate: Acridine-d9	73	50-140 %	2018-04-20
Surrogate: Naphthalene-d8	90	50-140 %	2018-04-20
Surrogate: Perylene-d12	97	50-140 %	2018-04-20

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

Analysis Description	Method Ref.	Technique	Location
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Polycyclic Aromatic Hydrocarbons in Water	EPA 3511* / EPA 8270D	Hexane MicroExtraction (Base/Neutral) / GC-MSD (SIM)	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL	Reporting Limit (default)
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/L	Milligrams per litre
µg/L	Micrograms per litre
EPA	United States Environmental Protection Agency Test Methods

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

8041171

2018-04-20 13:12

WORK ORDER

REPORTED

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)	WORK ORDER	8041171
PROJECT	704-ENW.VENW03093-02	REPORTED	2018-04-20 13:12

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- **Reference Material (SRM)**: A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier

Dissolved Metals, Batch B8D1195

Blank (B8D1195-BLK1)		Prepared: 2018-04-18, Analyzed: 2018-04-18							
Copper, dissolved	< 0.00040	0.00040 mg/L							
LCS (B8D1195-BS1)	Prepared: 2018-04-18, Analyzed: 2018-04-18								
Copper, dissolved	0.0199	0.00040 mg/L	0.0200	100	80-120				
Reference (B8D1195-SRM1)		Prepared: 2018-04-18, Analyzed: 2018-04-18							
Copper, dissolved	0.835	0.00040 mg/L	0.844	99	90-115				

Polycyclic Aromatic Hydrocarbons (PAH), Batch B8D1327

Blank (B8D1327-BLK1)			Prepared: 2018-04-19,	Analyzed	d: 2018-04-19
Acenaphthene	< 0.050	0.050 µg/L			
Acenaphthylene	< 0.200	0.200 µg/L			
Acridine	< 0.050	0.050 µg/L			
Anthracene	< 0.010	0.010 µg/L			
Benz(a)anthracene	< 0.010	0.010 µg/L			
Benzo(a)pyrene	< 0.010	0.010 µg/L			
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L			
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L			
Benzo(k)fluoranthene	< 0.050	0.050 µg/L			
2-Chloronaphthalene	< 0.100	0.100 µg/L			
Chrysene	< 0.050	0.050 µg/L			
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L			
Fluoranthene	< 0.030	0.030 µg/L			
Fluorene	< 0.050	0.050 µg/L			
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L			
1-Methylnaphthalene	< 0.100	0.100 µg/L			
2-Methylnaphthalene	< 0.100	0.100 µg/L			
Naphthalene	< 0.200	0.200 µg/L			
Phenanthrene	< 0.100	0.100 µg/L			
Pyrene	< 0.020	0.020 µg/L			
Quinoline	< 0.050	0.050 µg/L			
Surrogate: Acridine-d9	3.95	µg/L	4.44	89	50-140
Surrogate: Naphthalene-d8	3.99	μg/L	4.44	90	50-140
Surrogate: Perylene-d12	4.43	µg/L	4.44	100	50-140

Naphthalene

Phenanthrene

Surrogate: Acridine-d9

Surrogate: Naphthalene-d8

Surrogate: Perylene-d12

Pyrene

Quinoline

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO PROJECT	Tetra Tech EBA Inc 704-ENW.VENW03	. (Kelowna) 8093-02				WORK REPOR	ORDER TED	8041 2018	171 -04-20	13:12
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Polycyclic Aromat	ic Hydrocarbons (PAH)	, Batch B8D132	7. Continued							
	,	,	,	Dreverse			4.0040.0	4.40		
LCS (B8D1327-B8	51)			Prepared	1: 2018-04-	19, Analyze	0:2018-0	14-19		
Acenaphthene		4.07	0.050 µg/L	4.40		93	58-125			
Acenaphthylene		4.24	0.200 µg/L	4.40		96	54-128			
Acridine		2.99	0.050 µg/L	4.44		67	50-112			
Anthracene		4.29	0.010 µg/L	4.44		97	66-125			
Benz(a)anthracene		4.84	0.010 µg/L	4.44		109	59-123			
Benzo(a)pyrene		4.58	0.010 µg/L	4.40		104	62-116			
Benzo(b+j)fluoranthe	ene	9.16	0.050 µg/L	8.89		103	69-121			
Benzo(g,h,i)perylene)	4.10	0.050 µg/L	4.40		93	58-129			
Benzo(k)fluoranthen	e	4.63	0.050 µg/L	4.44		104	67-128			
2-Chloronaphthalene	9	3.65	0.100 µg/L	4.44		82	50-140			
Chrysene		4.82	0.050 µg/L	4.42		109	58-125			
Dibenz(a,h)anthrace	ne	4.14	0.010 µg/L	4.42		94	58-126			
Fluoranthene		4.27	0.030 µg/L	4.36		98	67-133			
Fluorene		4.06	0.050 µg/L	4.40		92	55-122			
Indeno(1,2,3-cd)pyre	ene	4.08	0.050 µg/L	4.44		92	62-126			
1-Methylnaphthalene	9	3.95	0.100 µg/L	4.38		90	53-125			
2-Methylnaphthalene	9	3.82	0.100 µg/L	4.36		88	52-122			
Naphthalene		3.90	0.200 µg/L	4.44		88	50-130			
Phenanthrene		4.29	0.100 µg/L	4.40		97	67-127			
Pyrene		4.30	0.020 µg/L	4.44		97	68-133			
Quinoline		6.02	0.050 µg/L	4.44		136	51-140			
Surrogate: Acridine-	d9	3.07	µg/L	4.44		69	50-140			
Surrogate: Naphthal	ene-d8	3.86	μg/L	4.44		87	50-140			
Surrogate: Perylene	-d12	4.16	µg/L	4.44		94	50-140			
LCS Dup (B8D132	27-BSD1)			Prepared	1: 2018-04-1	9, Analyze	d: 2018-0	4-19		
Acenaphthene		4.34	0.050 µg/L	4.40		99	58-125	6	16	
Acenaphthylene		4.51	0.200 µg/L	4.40		102	54-128	6	16	
Acridine		2.89	0.050 µg/L	4.44		65	50-112	3	26	
Anthracene		4.45	0.010 µg/L	4.44		100	66-125	4	14	
Benz(a)anthracene		4.96	0.010 µg/L	4.44		112	59-123	2	23	
Benzo(a)pyrene		4.74	0.010 µg/L	4.40		108	62-116	3	16	
Benzo(b+j)fluoranthe	ene	9.26	0.050 µg/L	8.89		104	69-121	1	14	
Benzo(g,h,i)perylene)	4.25	0.050 µg/L	4.40		97	58-129	4	25	
Benzo(k)fluoranthen	e	4.83	0.050 µg/L	4.44		109	67-128	4	18	
2-Chloronaphthalene	9	3.89	0.100 µg/L	4.44		88	50-140	6	30	
Chrysene		4.98	0.050 µg/L	4.42		113	58-125	3	24	
Dibenz(a,h)anthrace	ne	4.30	0.010 µg/L	4.42		97	58-126	4	23	
Fluoranthene		4.41	0.030 µg/L	4.36		101	67-133	3	18	
Fluorene		4.30	0.050 µg/L	4.40		98	55-122	6	16	
Indeno(1,2,3-cd)pvre	ene	4.21	0.050 µg/L	4.44		95	62-126	3	22	
1-Methylnaphthalene	9	4.23	0.100 µg/L	4.38		97	53-125	7	16	
2-Methylnaphthalene	9	4.15	0.100 µg/L	4.36		95	52-122	8	17	
			10							

0.200 µg/L

0.100 µg/L

0.020 µg/L

0.050 µg/L

μg/L

µg/L

µg/L

4.44

4.40

4.44

4.44

4.44

4.44

4.44

95

101

100

139

65

93

97

50-130

67-127

68-133

51-140

50-140

50-140

50-140

8

4

3

3

18

14

18

12

4.20

4.45

4.43

6.18

2.89

4.14

4.30

CERTIFICATE OF ANALYSIS

REPORTED TO	Tetra Tech EBA Inc. (Kelowna) 150 - 1715 Dickson Ave. Kelowna, BC V1Y 9G6		
ATTENTION	Chris Chu	WORK ORDER	8060739
PO NUMBER PROJECT PROJECT INFO	704-ENW.VENW03093-02	RECEIVED / TEMP REPORTED COC NUMBER	2018-06-07 15:48 / 7°C 2018-06-15 14:11 B6241

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO 17025:2005 for specific tests listed in the scope of accreditation approved by CALA.

We've Got Chemistry

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

32

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at jnobrega@caro.ca

Authorized By:

Jessica Nobrega, B.Sc. Client Service Manager

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7

Caring About Results, Obviously.

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

0.200 µg/L

0.100 µg/L

0.020 µg/L

0.050 µg/L

%

50-140 %

50-140 %

50-140

2018-06-15 14:11

2018-06-14

2018-06-14

2018-06-14

2018-06-14

2018-06-14

2018-06-14

2018-06-14

Analyte	Result	RL	Units	Analyzed	Qualifier
18MW01 (8060739-01) Matrix: Wat	er Sampled: 2018-06-06 16:04				
Dissolved Metals					
Copper, dissolved	0.00459	0.00040	mg/L	2018-06-14	
Polycyclic Aromatic Hydrocarbons (PA	\ <i>H</i>)				
Acenaphthene	< 0.050	0.050	µg/L	2018-06-14	
Acenaphthylene	< 0.200	0.200	µg/L	2018-06-14	
Acridine	< 0.050	0.050	µg/L	2018-06-14	
Anthracene	< 0.010	0.010	µg/L	2018-06-14	
Benz(a)anthracene	< 0.010	0.010	µg/L	2018-06-14	
Benzo(a)pyrene	< 0.010	0.010	µg/L	2018-06-14	
Benzo(b+j)fluoranthene	< 0.050	0.050	µg/L	2018-06-14	
Benzo(g,h,i)perylene	< 0.050	0.050	µg/L	2018-06-14	
Benzo(k)fluoranthene	< 0.050	0.050	µg/L	2018-06-14	
2-Chloronaphthalene	< 0.100	0.100	µg/L	2018-06-14	
Chrysene	< 0.050	0.050	µg/L	2018-06-14	
Dibenz(a,h)anthracene	< 0.010	0.010	µg/L	2018-06-14	
Fluoranthene	< 0.030	0.030	µg/L	2018-06-14	
Fluorene	< 0.050	0.050	µg/L	2018-06-14	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	µg/L	2018-06-14	
1-Methylnaphthalene	< 0.100	0.100	µg/L	2018-06-14	
2-Methylnaphthalene	< 0.100	0.100	µg/L	2018-06-14	

< 0.200

< 0.100

< 0.020

< 0.050

71

90

77

18MW02 (8060739-02) | Matrix: Water | Sampled: 2018-06-06 12:02

Dissolved Metals

Naphthalene

Phenanthrene

Surrogate: Acridine-d9

Surrogate: Naphthalene-d8

Surrogate: Perylene-d12

Pyrene

Quinoline

Copper, dissolved	0.00069	0.00040 mg/L	2018-06-14	
Polycyclic Aromatic Hydrocarbons (F	РАН)			
Acenaphthene	< 0.050	0.050 μg/L	2018-06-14	
Acenaphthylene	< 0.200	0.200 µg/L	2018-06-14	
Acridine	< 0.050	0.050 µg/L	2018-06-14	
Anthracene	< 0.010	0.010 µg/L	2018-06-14	
Benz(a)anthracene	< 0.010	0.010 µg/L	2018-06-14	
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-06-14	
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L	2018-06-14	
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L	2018-06-14	
Benzo(k)fluoranthene	< 0.050	0.050 µg/L	2018-06-14	0
				208

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

8060739 2018-06-15 14:11

2018-06-14

Analyte	Result	RL U	Jnits	Analyzed	Qualifier	
18MW02 (8060739-02) Matrix: Water Sampled: 2018-06-06 12:02, Continued						
Polycyclic Aromatic Hydrocarbons (PA	AH), Continued					
2-Chloronaphthalene	< 0.100	0.100 µ	ıg/L	2018-06-14		
Chrysene	< 0.050	0.050 µ	ıg/L	2018-06-14		
Dibenz(a,h)anthracene	< 0.010	0.010 µ	ıg/L	2018-06-14		
Fluoranthene	< 0.030	0.030 µ	ıg/L	2018-06-14		
Fluorene	< 0.050	0.050 µ	ıg/L	2018-06-14		
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µ	ıg/L	2018-06-14		
1-Methylnaphthalene	< 0.100	0.100 µ	ıg/L	2018-06-14		
2-Methylnaphthalene	< 0.100	0.100 µ	ıg/L	2018-06-14		
Naphthalene	< 0.200	0.200 µ	ıg/L	2018-06-14		
Phenanthrene	< 0.100	0.100 µ	ıg/L	2018-06-14		
Pyrene	< 0.020	0.020 µ	ıg/L	2018-06-14		
Quinoline	< 0.050	0.050 µ	ıg/L	2018-06-14		
Surrogate: Acridine-d9	69	50-140 %	6	2018-06-14		
Surrogate: Naphthalene-d8	88	50-140 %	6	2018-06-14		

50-140 %

79

18MW03 (8060739-03) | Matrix: Water | Sampled: 2018-06-06 14:00

Dissolved Metals

Surrogate: Perylene-d12

Copper, dissolved	0.00099	0.00040 mg/L	2018-06-14
Polycyclic Aromatic Hydrocarbons (F	РАН)		
Acenaphthene	< 0.050	0.050 μg/L	2018-06-14
Acenaphthylene	< 0.200	0.200 µg/L	2018-06-14
Acridine	< 0.050	0.050 µg/L	2018-06-14
Anthracene	< 0.010	0.010 µg/L	2018-06-14
Benz(a)anthracene	< 0.010	0.010 µg/L	2018-06-14
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-06-14
Benzo(b+j)fluoranthene	< 0.050	0.050 μg/L	2018-06-14
Benzo(g,h,i)perylene	< 0.050	0.050 μg/L	2018-06-14
Benzo(k)fluoranthene	< 0.050	0.050 μg/L	2018-06-14
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-06-14
Chrysene	< 0.050	0.050 μg/L	2018-06-14
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L	2018-06-14
Fluoranthene	< 0.030	0.030 µg/L	2018-06-14
Fluorene	< 0.050	0.050 µg/L	2018-06-14
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L	2018-06-14
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-06-14
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-06-14
Naphthalene	< 0.200	0.200 µg/L	2018-06-14
Phenanthrene	< 0.100	0.100 µg/L	2018-06-14
Pyrene	< 0.020	0.020 µg/L	2018-06-14
Quinoline	< 0.050	0.050 µg/L	2018-06-14
	Caring About Result	ts. Obviously.	Page 3 of 9

REPORTED TO PROJECT	Tetra Tech EBA Ir 704-ENW.VENW(uc. (Kelowna) 03093-02		WORK ORDER REPORTED	8060739 2018-06-1	5 14:11
Analyte		Result	RL	Units	Analyzed	Qualifier
18MW03 (806073	9-03) Matrix: Wate	er Sampled: 2018-06-06 14:00, C	ontinued			
Polycyclic Aromat	ic Hydrocarbons (PA	H), Continued				
Surrogate: Acridir	ne-d9	74	50-140	%	2018-06-14	
Surrogate: Napht	halene-d8	86	50-140	%	2018-06-14	
Surrogate: Peryle	ne-d12	64	50-140	%	2018-06-14	
18MW04 (806073 Dissolved Metals	9-04) Matrix: Wate	er Sampled: 2018-06-06 15:05				
Copper, dissolved	ł	0.00136	0.00040	mg/L	2018-06-14	
Polycyclic Aromat	ic Hydrocarbons (PAI	H)				
Acenaphthene		< 0.050	0.050	µg/L	2018-06-14	
Acenaphthylene		< 0.200	0.200	µg/L	2018-06-14	
Acridine		< 0.050	0.050	μg/L	2018-06-14	
Anthracene		< 0.010	0.010	µg/L	2018-06-14	
Benz(a)anthracer	ne	< 0.010	0.010	µg/L	2018-06-14	
D ()		0.010				

Anthracene	< 0.010	0.010 µg/L	2018-06-14
Benz(a)anthracene	< 0.010	0.010 µg/L	2018-06-14
Benzo(a)pyrene	< 0.010	0.010 µg/L	2018-06-14
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L	2018-06-14
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L	2018-06-14
Benzo(k)fluoranthene	< 0.050	0.050 µg/L	2018-06-14
2-Chloronaphthalene	< 0.100	0.100 µg/L	2018-06-14
Chrysene	< 0.050	0.050 µg/L	2018-06-14
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L	2018-06-14
Fluoranthene	< 0.030	0.030 µg/L	2018-06-14
Fluorene	< 0.050	0.050 µg/L	2018-06-14
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L	2018-06-14
1-Methylnaphthalene	< 0.100	0.100 µg/L	2018-06-14
2-Methylnaphthalene	< 0.100	0.100 µg/L	2018-06-14
Naphthalene	< 0.200	0.200 µg/L	2018-06-14
Phenanthrene	< 0.100	0.100 µg/L	2018-06-14
Pyrene	< 0.020	0.020 µg/L	2018-06-14
Quinoline	< 0.050	0.050 µg/L	2018-06-14
Surrogate: Acridine-d9	64	50-140 %	2018-06-14
Surrogate: Naphthalene-d8	85	50-140 %	2018-06-14
Surrogate: Perylene-d12	70	50-140 %	2018-06-14

DUP#2 (8060739-05) | Matrix: Water | Sampled: 2018-06-06 16:10

Dissolved Metals			
Copper, dissolved	0.00522	0.00040 mg/L	2018-06-14
Polycyclic Aromatic Hydrocarb	ons (PAH)		
Acenaphthene	< 0.050	0.050 µg/L	2018-06-14
Acenaphthylene	< 0.200	0.200 µg/L	2018-06-14
	Caring About Re <mark>sults, O</mark> l	bviously.	Page 4 of 9

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

8060739 2018-06-15 14:11

Analyte	Result	RL	Units	Analyzed	Qualifier
DUP#2 (8060739-05) Matrix: Wate	er Sampled: 2018-06-06 16:10, Continu	ed			
Polycyclic Aromatic Hydrocarbons (P	AH), Continued				
Acridine	< 0.050	0.050	µg/L	2018-06-14	
Anthracene	< 0.010	0.010	µg/L	2018-06-14	
Benz(a)anthracene	< 0.010	0.010	µg/L	2018-06-14	
Benzo(a)pyrene	< 0.010	0.010	µg/L	2018-06-14	
Benzo(b+j)fluoranthene	< 0.050	0.050	µg/L	2018-06-14	
Benzo(g,h,i)perylene	< 0.050	0.050	µg/L	2018-06-14	
Benzo(k)fluoranthene	< 0.050	0.050	µg/L	2018-06-14	
2-Chloronaphthalene	< 0.100	0.100	µg/L	2018-06-14	
Chrysene	< 0.050	0.050	µg/L	2018-06-14	
Dibenz(a,h)anthracene	< 0.010	0.010	µg/L	2018-06-14	
Fluoranthene	< 0.030	0.030	µg/L	2018-06-14	
Fluorene	< 0.050	0.050	µg/L	2018-06-14	
Indeno(1,2,3-cd)pyrene	< 0.050	0.050	µg/L	2018-06-14	
1-Methylnaphthalene	< 0.100	0.100	µg/L	2018-06-14	
2-Methylnaphthalene	< 0.100	0.100	µg/L	2018-06-14	
Naphthalene	< 0.200	0.200	µg/L	2018-06-14	
Phenanthrene	< 0.100	0.100	µg/L	2018-06-14	
Pyrene	< 0.020	0.020	µg/L	2018-06-14	
Quinoline	< 0.050	0.050	µg/L	2018-06-14	
Surrogate: Acridine-d9	75	50-140	%	2018-06-14	
Surrogate: Naphthalene-d8	90	50-140	%	2018-06-14	
Surrogate: Perylene-d12	82	50-140	%	2018-06-14	

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

WORK ORDER 8060739 REPORTED 2018-06-15 14:11

Analysis Description	Method Ref.	Technique	Location
Dissolved Metals in Water	EPA 200.8 / EPA 6020B	0.45 µm Filtration / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	Richmond
Polycyclic Aromatic Hydrocarbons in Water	EPA 3511* / EPA 8270D	Hexane MicroExtraction (Base/Neutral) / GC-MSD (SIM)	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL F	Reporting Limit (default)
< L	ess than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/L M	Milligrams per litre
µg/L M	Micrograms per litre
EPA l	United States Environmental Protection Agency Test Methods

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)	WORK ORDER	8060739
PROJECT	704-ENW.VENW03093-02	REPORTED	2018-06-15 14:11

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- Duplicate (Dup): An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Dissolved Metals, Batch B8F1042									

Blank (B8F1042-BLK1)			Prepared: 2018-06	6-14, Analyze	ed: 2018-06-14				
Copper, dissolved	< 0.00040	0.00040 mg/L							
LCS (B8F1042-BS1)			Prepared: 2018-06-14, Analyzed: 2018-06-14						
Copper, dissolved	0.0192	0.00040 mg/L	0.0200	96	80-120				
Duplicate (B8F1042-DUP1)	So	urce: 8060739-01	Prepared: 2018-06	6-14, Analyze	ed: 2018-06-14				
Copper, dissolved	0.00452	0.00040 mg/L	0.0045	9	1	20			
Reference (B8F1042-SRM1)			Prepared: 2018-06-14, Analyzed: 2018-06-14						
Copper, dissolved	0.854	0.00040 mg/L	0.844	101	90-115				

Polycyclic Aromatic Hydrocarbons (PAH), Batch B8F1116

Blank (B8F1116-BLK1)		Prepared: 2018-06-14, Analyzed: 2018-06-14
Acenaphthene	< 0.050	0.050 µg/L
Acenaphthylene	< 0.200	0.200 µg/L
Acridine	< 0.050	0.050 µg/L
Anthracene	< 0.010	0.010 µg/L
Benz(a)anthracene	< 0.010	0.010 µg/L
Benzo(a)pyrene	< 0.010	0.010 µg/L
Benzo(b+j)fluoranthene	< 0.050	0.050 µg/L
Benzo(g,h,i)perylene	< 0.050	0.050 µg/L
Benzo(k)fluoranthene	< 0.050	0.050 µg/L
2-Chloronaphthalene	< 0.100	0.100 µg/L
Chrysene	< 0.050	0.050 µg/L
Dibenz(a,h)anthracene	< 0.010	0.010 µg/L
Fluoranthene	< 0.030	0.030 µg/L
Fluorene	< 0.050	0.050 µg/L
Indeno(1,2,3-cd)pyrene	< 0.050	0.050 µg/L
1-Methylnaphthalene	< 0.100	0.100 µg/L
2-Methylnaphthalene	< 0.100	0.100 µg/L
Naphthalene	< 0.200	0.200 µg/L
Phenanthrene	< 0.100	0.100 µg/L
Pyrene	< 0.020	0.020 µg/L
Quinoline	< 0.050	0.050 µg/L

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO Tetra Tech EBA Inc. PROJECT 704-ENW.VENW03		c. (Kelowna) 3093-02				WORK ORDER REPORTED		8060739 2018-06-15		14:11	
Analyte		Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier	
Polycyclic Aromatic	c Hydrocarbons (PAF	l), Batch B8F1116	6, Continued								
Blank (B8F1116-BL	-K1), Continued			Prepared	1: 2018-06-1	4, Analyze	d: 2018-0)6-14			
Surrogate: Acridine-d	9	3.06	ua/L	4.43		69	50-140				
Surrogate: Naphthale	ne-d8	3.63	µg/L	4.48		81	50-140				
Surrogate: Perylene-o	d12	3.36	μg/L	4.48		75	50-140				
LCS (B8F1116-BS1)			Prepared	1: 2018-06-1	4, Analyze	d: 2018-0)6-14			
Acenaphthene		3.03	0.050 µg/L	4.42		69	58-125				
Acenaphthylene		3.37	0.200 µg/L	4.42		76	54-128				
Acridine		2.97	0.050 µg/L	4.46		66	50-112				
Anthracene		3.21	0.010 µg/L	4.46		72	66-125				
Benz(a)anthracene		3.55	0.010 µg/L	4.46		80	59-123				
Benzo(a)pyrene		2.94	0.010 µg/L	4.42		67	62-116				
Benzo(b+j)fluoranther	ne	6.08	0.050 µg/L	8.93		68	69-121			SPK1	
Benzo(g,h,i)perylene		3.13	0.050 µg/L	4.42		71	58-129				
Benzo(k)fluoranthene		3.04	0.050 µg/L	4.46		68	67-128				
2-Chloronaphthalene		2.88	0.100 µg/L	4.46		65	50-140				
Chrysene		3.34	0.050 µg/L	4.44		75	58-125				
Dibenz(a,h)anthracen	e	3.28	0.010 µg/L	4.44		74	58-126				
Fluoranthene		4.29	0.030 µg/L	4.38		98	67-133				
Fluorene		3.28	0.050 µg/L	4.42		74	60,122				
1 Mothylpaphthalana	le	3.14	0.050 µg/L	4.40		70	52 125				
		3 35	0.100 µg/L	4.40		70	52-120				
Nanhthalene		3.57	0.200 µg/L	4 46		80	50-130				
Phenanthrene		3.52	0.100 µg/L	4.42		80	67-127				
Pyrene		4.22	0.020 µg/L	4.46		95	68-133				
Quinoline		6.08	0.050 µg/L	4.46		136	51-140				
Surrogate: Acridine-d	9	3.35	µg/L	4.46		75	50-140				
Surrogate: Naphthale	ne-d8	4.30	µg/L	4.51		95	50-140				
Surrogate: Perylene-o	d12	3.48	μg/L	4.51		77	50-140				
LCS Dup (B8F1116	-BSD1)			Prepared	1: 2018-06-1	4, Analyze	d: 2018-0)6-14			
Acenaphthene		2.90	0.050 µg/L	4.46		65	58-125	4	16		
Acenaphthylene		3.20	0.200 µg/L	4.46		72	54-128	5	16		
Acridine		3.18	0.050 µg/L	4.50		71	50-112	7	26		
Anthracene		3.40	0.010 µg/L	4.50		76	66-125	6	14		
Benz(a)anthracene		3.88	0.010 µg/L	4.50		86	59-123	9	23		
Benzo(a)pyrene		3.18	0.010 µg/L	4.46		71	62-116	8	16		
Benzo(b+j)fluoranther	ne	6.43	0.050 µg/L	9.00		71	69-121	6	14		
Benzo(g,h,i)perylene		3.44	0.050 µg/L	4.46		77	58-129	9	25		
Benzo(k)fluoranthene		3.29	0.050 µg/L	4.50		73	67-128	8	18		
2-Chloronaphthalene		2.68	0.100 µg/L	4.50		59	50-140	7	30		
Chrysene		3.64	0.050 µg/L	4.48		81	58-125	9	24		
Dibenz(a,n)anthracen	e	3.57	0.010 µg/L	4.48		80	58-120	8	23		
Fluorantinene		4.00	0.030 µg/L	4.41		73	55 122	9	10		
Indeno(1.2.3-cd)pyrer		3.43	0.050 µg/L	4.40		75	62-126		22		
1-Methylnanhthalene		3.45	0.000 µg/L	4 4 3		69	53-125	9	16		
2-Methvlnaphthalene		3.04	0.100 µg/L	4.41		69	52-122	10	17		
Naphthalene		3.19	0.200 µg/L	4.50		71	50-130	11	18		
Phenanthrene		3.68	0.100 µg/L	4.46		82	67-127	4	14		
Pyrene		4.62	0.020 µg/L	4.50		103	68-133	9	18		
Quinoline		5.99	0.050 µg/L	4.50		133	51-140	1	12		
Surrogate: Acridine-d	9	3.52	µg/L	4.50		78	50-140				
Surrogate: Naphthale	ne-d8	3.87	μ <u>q</u> /L	4.55		85	50-140				
Surrogate: Perylene-o	d12	3.79	µg/L	4.55		83	50-140				

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Tetra Tech EBA Inc. (Kelowna)
PROJECT	704-ENW.VENW03093-02

WORK ORDER 80 REPORTED 20

8060739 2018-06-15 14:11

QC Qualifiers:

SPK1 The recovery of this analyte was outside of established control limits. The data was accepted based on performance of other batch QC.

OBS WELL 356 - WINFIELD (JIM BAILEY RD.)

APPENDIX C PROPOSED RECREATIONAL TRAIL

APPROXIMATELY 200mm OF EXISTING BALLAST ROCK TO BE REMOVED OR RECLAIMED AND

			E	G				K	1
1	A B C		rs for Data	Sets with	Non-Dete	inte i	J	N	L
2					Non Dolo	.010			
2	Liser Selected Ontions								
3	Date/Time of Computation	ProLICI 5 16/13/2018	1.57.36 5	DN/					
4	Erom Filo	WorkShoot vic	5 1.57.50 F	IVI					
5									
6	Full Precision								
/	Confidence Coefficient	30.00							
8	inder of Bootstrap Operations	2000							
9	BoB								
10	Bar								
11			Conorol	Statiation					
12	Total Nur	mbor of Observations	102	Statistics		Number of	Diatinat Oha	onvotiona	60
13	l Otal Nul	Number of Detecto	102				umbor of Nor		100
14	Numb	or of Distinct Detects	60			Number of	EDictinct Nor	-Delecis	109
15	Numb	Minimum Detects	0.01			Number of	Minimum No	I-Delects	I 0.01
16		Maximum Data at	1.0					Di-Deleci	0.01
17		Variance Detect	1.3					Detect	0.01
18		Variance Delects	0.120					-Delects	0.050
19		Mean Delects	0.200				5L		0.338
20		Skownoon Detects	1.57				Kurtooir		1.243
21	Ma	Skewness Delects	1.57					s Delects	1.401
22	Mea	an of Logged Detects	-2.076			;	SD of Logged	a Detects	1.398
23		Normo		t on Dotos	te Only				
24	Chan	NOTITIA	0 725			Test on De	tested Ohas	n otiono (). Data
25	Shap	Shopira Wilk D Value	0.735	Det		Not Norm	lected Obse	ificance	
26	3%	illioforo Toot Statiatio	0 227	Dei			GOE Test	lincance L	evei
27	L	illiefors Critical Value	0.237	Det	a ata d Date			ificance l	aval
28	5% L		U. 104				ai at 5% Sign	lincance L	evei
29		Delected Data			ynnicance	Level			
30	Kanlan Mojor	(KM) Statistics using	Normal C	ritical Valu	ues and ot	hor Nonnar	amotrio LICI	<u> </u>	
31		(KM Mean	0 122				anderd Error	-o r of Mean	0.0106
32			0.122			KW O			0.0150
33			0.203		059	KM (Pore	95 % Kivi (D		0.157
34		95% KM (7) UCL	0.154		95		KM Bootetr		0.150
35	90%	55 /0 KW (2) UCL	0.134			957			0.103
30	90%	KM Chebyshev UCL	0.10			00%			0.207
3/	57.576	The onebysnev oce	0.244			557			0.017
30		Gamma GOF T	ests on De	etected Oh	servation	s Only			
39		A-D Test Statistic	1 423		Δn	derson-Da	rling GOF Te	eet	
40	1	5% A-D Critical Value	0 795	Detected	Data Not (Gamma Dis	tributed at 59	% Signific:	ance l evel
41		K-S Test Statistic	0.125	Dotootou	K	olmogorov-	Smirnov GO)F	
42		5% K-S Critical Value	0.109	Detected	Data Not (Gamma Dis	tributed at 5%	% Significa	ance Level
40		Detected Data Not Ga	amma Dist	ributed at	5% Sianifi	cance Leve	əl	g	
45					g				
46		Gamma S	tatistics or	Detected	Data Only	v			
47		k hat (MLE)	0.723			, k star	(bias correc	ted MLE)	0.703
48		Theta hat (MLE)	0.398			Theta star	(bias correc	ted MLE)	0.41
49		nu hat (MLE)	105.6			nı	, u star (bias c	orrected)	102.6
50		Mean (detects)	0.288				, -	,	
51		, ,							
52		Gamma ROS S	tatistics u	sing Imput	ed Non-D	etects			
53	GROS may not b	e used when data set	has > 50%	6 NDs with	many tied	observatio	ns at multiple	e DLs	
54	GROS may not be used when	n kstar of detects is sn	nall such a	s <1.0, esp	pecially wh	en the sam	ple size is sn	nall (e.g.,	<15-20)
55	For such	h situations, GROS me	ethod may	yield incor	rect value:	s of UCLs a	nd BTVs		
56		This is especial	ly true whe	en the sam	ple size is	small.			
57	For gamma distributed de	etected data, BTVs and	d UCLs ma	ay be comp	outed using	gamma dis	stribution on	KM estim	ates
58		Minimum	0.01			-		Mean	0.122
59		Maximum	1.3					Median	0.01
60		SD	0.264					CV	2.172
61		k hat (MLE)	0.437			k star	(bias correc	ted MLE)	0.434
62		Theta hat (MLE)	0.278			Theta star	(bias correc	ted MLE)	0.28
63		nu hat (MLE)	159.2			nı	u star (bias c	orrected)	157.9
64	Adjusted Lev	vel of Significance (β)	0.0487					,	
65	Approximate Chi Squ	are Value (157.92, α)	129.9		Adjus	ted Chi Squ	are Value (1	57.92, β)	129.7

66	A 95% Ga	B amma App	C roximate U	D CL (use wł	E nen n>=50)	F 0.148	G 9!	H 5% Gamma	I Adjusted	J JCL (use w	K /hen n<50)	L 0.148	
67									-		,		
68				Estim	nates of Ga	mma Para	meters us	ing KM Est	imates				
69					Mean (KM)	0.122					SD (KM)	0.263	
70				Var	iance (KM)	0.0693				SE of N	Mean (KM)	0.0196	
71					k hat (KM)	0.213		k star (KM)					
72				the	ta hat (KM)	0.57				theta	a star (KM)	0.57	
73			80% ga	amma perc	entile (KM)	0.165			90% ga	amma perce	entile (KM)	0.367	
75			95% ga	amma perc	entile (KM)	0.615			99% ga	amma perce	entile (KM)	1.292	
76					. ,						. ,		
77					Gamma	Kaplan-M	eier (KM)	Statistics					
78		Approxin	nate Chi Sq	uare Value	e (77.62, α)	58.32		Adju	sted Chi Sc	uare Value	e (77.62, β)	58.19	
79	5% Gamm	na Approxir	nate KM-U	CL (use wł	nen n>=50)	0.162	95% (Gamma Ad	usted KM-I	JCL (use w	/hen n<50)	0.162	
80				Logn		Toot on D	atastad O	beenvetion	o Only				
81		Shanir	Wilk Appr	ovimate Te	offial GOF	0.943		bservation	s Only Shaniro Wi		et		
0∠ 83		Shapir	5 Wilk Appl 5%	Shapiro W	/ilk P Value	0.00451	Dete	cted Data N	Jot Loanorr	nal at 5% S	Significance	Level	
84				Lilliefors Te	est Statistic	0.0734	2010		Lilliefors	GOF Test	gimeanee		
85			5% L	_illiefors Cr	itical Value	0.104	Detect	ed Data ap	pear Logno	rmal at 5%	Significanc	e Level	
86			Dete	ected Data	appear Ap	proximate	Lognorma	al at 5% Sig	nificance	evel	-		
87													
88				Logno	ormal ROS	Statistics	Using Imp	uted Non-E	Detects				
89			Ν	lean in Ori	ginal Scale	0.119				Mean in	Log Scale	-4.462	
90				SD in Ori	ginal Scale	0.265			050/ 0	SD in	Log Scale	2.468	
91	9	5% t UCL (assumes n	ormality of	ROS data)	0.151			95% Per	Centile Bool	tstrap UCL	0.154	
92			95%		A Bootstrap UCL 0.158 95% Bootstrap t UCL								
93	93 95% R-UUL (LOG KUS) 0.484												
94			Statistics u	using KM e	estimates o	n Loaged I	Data and /	Assuming L	.ognormal	Distribution	1		
96				KM Mea	an (logged)	-3.591			0	KM	Geo Mean	0.0276	
97				KM S	D (logged)	1.52			95% Criti	cal H Value	e (KM-Log)	2.672	
98		KM	Standard E	rror of Mea	an (logged)	0.113			9	5% H-UCL	(KM -Log)	0.118	
99				KM S	SD (logged)	1.52			95% Criti	cal H Value	e (KM-Log)	2.672	
100		KM	Standard E	rror of Mea	an (logged)	0.113							
101													
102			ו מ/ וח	lormal		DL/2 5	atistics			ransformo	d		
103				Nean in Ori	ainal Scale	0 119				Mean in	Log Scale	-4 006	
104			IV.	SD in Ori	ginal Scale	0.265				SD in	Log Scale	1.812	
105			95% t UCL	(Assumes	s normality)	0.151				95% F	I-Stat UCL	0.141	
107			DL/2 is not	à recomm	nended met	thod, provid	ded for co	mparisons	and histori	cal reasons	s		
108													
109				N	onparamet	ric Distribu	tion Free	UCL Statis	tics				
110			Detected	Data appe	ar Approxi	mate Logno	ormal Dist	ributed at §	5% Signific	ance Level			
111						Puggootod							
112								se					
113						0.110							
115	Note: Su	ggestions r	egarding th	ne selection	n of a 95%	UCL are pr	ovided to I	nelp the use	er to select	the most ar	opropriate 9	5% UCL.	
116		55	Recon	nmendatio	ns are base	ed upon dat	a size, da	ta distributio	on, and ske	wness.			
117	These r	ecommenc	lations are	based upo	n the result	s of the sim	nulation stu	udies summ	narized in S	ingh, Maich	nle, and Lee	(2006).	
118	However, s	imulations	results will	not cover	all Real Wo	orld data se	ts; for add	itional insig	ht the user	may want t	o consult a	statisticia	
119													
120	BbF												
121						<u> </u>	<u>.</u>						
122			Total No.	mbor of O	convotion-		Statistics		Number of	Distinct Of	convetiene	70	
123			i otal Nu	Number	of Detecto	182			INUIIIDEL OF	unsunct Ob	on-Detecto	/9 07	
124			Numł	per of Disti	nct Detects	79			Number of	Distinct No	on-Detects	1	
120			INUIIL	Minim	num Detect	0.01				Minimum N	Non-Detect	0.01	
120				Maxim	num Detect	2.52				Maximum N	Non-Detect	0.01	
128				Varian	ice Detects	0.322				Percent No	on-Detects	53.3%	
129				Ме	an Detects	0.452				S	SD Detects	0.568	
130				Medi	ian Detects	0.212				C	CV Detects	1.255	

					-	_			1 .			· · ·			
	A	В	C	D	E		G	Н		J	K	L			
131				Skewnes	ss Detects	1.742				Kurtos	sis Detects	2.485			
132			Mea	an of Logge	ed Detects	-1.704			:	SD of Logg	ed Detects	1.537			
133												<u>.</u>			
100					Norma		t on Detec	te Only							
134			0	·					T D.						
135			Snap	IN WIIK I ES	st Statistic	0.754	NO	mai GOF	lest on De		servations (Jniy			
136			5%	Shapiro Wi	lk P Value	0	Detected Data Not Normal at 5% Significance Level								
137			L	llliefors Tes	st Statistic	0.218			Lilliefors	GOF Test					
138			5% L	illiefors Crit	tical Value	0.0962	Det	ected Data	Not Norm	al at 5% Sic	nificance L	evel			
120				Deter	rted Data	Not Norma	at 5% Si	nificance	l evel		5				
139				Delet											
140															
141		Ka	iplan-Meier	(KM) Stati	stics using) Normal C	ritical Valu	ies and ot	her Nonpai	ametric UC	CLs				
142					KM Mean	0.217			KM S	andard Err	or of Mean	0.0331			
143					KM SD	0.444				95% KM ((BCA) UCL	0.269			
144				95% K	M (t) UCL	0.271		95%	6 KM (Perc	entile Boot	strap) UCL	0.272			
1/5				95% KI		0 271			959	6 KM Boots	stran t UCL	0 281			
140			0.0%	KM Choby		0.216			050	KM Chob		0.201			
146			90%	KIVI Crieby	Shev UCL	0.310			95%		ysnev UCL	0.301			
147			97.5%	KM Cheby	shev UCL	0.424			99%	KM Cheby	yshev UCL	0.546			
148															
149	49 Gamma GOF Tests on Detected Observations Only														
150				A-D Tes	st Statistic	0.796		An	derson-Da	rling GOF [·]	Test				
151				5% A-D Crit	ical Value	0 802)etected d	ata annear	Gamma D	istributed a	t 5% Signifi	cance Lev			
101					nt Statiatia	0.002				Smirnov C					
152				K-5 16	st Statistic	0.073		N	oimogorov-	Smirnov G					
153			ļ	5% K-S Crit	tical Value	0.101	etected da	ata appear	Gamma D	istributed a	t 5% Signifi	cance Leve			
154			D	etected dat	a appear (Gamma Di	stributed a	it 5% Signi	ficance Le	vel					
155															
156	Gamma Statistics on Detected Data Only														
150				k	hat (MLE)	833.0		,	ketar	/hise corre	octod MLE)	0.652			
157				Thete		0.000						0.002			
158				Ineta	nat (MLE)	0.677			i neta star	(blas corre	ected MLE)	0.694			
159				nu	hat (MLE)	113.5			n	u star (bias	corrected)	110.9			
160				Mear	n (detects)	0.452									
161															
162				Gam	ma ROS S	Statistics u	sina Imput	ed Non-De	etects						
162		GRO	S may not h	e used whe	en data set	has $> 50\%$	6 NDs with	many tied	observatio	ns at multir	le DI s				
103	CROS	mov not by		e used wite					on the com			<15 20)			
164	GRUS	may not be		I KSIAI OI UK		nall such a	s < 1.0, esp	Decially with			small (e.g.,	<15-20)			
165			For such	n situations	, GROS m	ethod may	yield incor	rect values	s of UCLs a	nd BTVs					
166				This	is especial	ly true whe	en the sam	ple size is :	small.						
167	For	gamma di	stributed de	tected data	, BTVs an	d UCLs ma	ay be comp	outed using	gamma di	stribution o	n KM estim	ates			
168					Minimum	0.01					Mean	0.217			
169					Maximum	2 52					Median	0.01			
100					90	0.446					CV	2 057			
170				i.		0.770				/l=!== = = = ===		2.007			
171				К	nat (MLE)	0.385			K Star	(blas corre	ected MLE)	0.382			
172				l heta	hat (MLE)	0.563			I heta star	(bias corre	ected MLE)	0.567			
173				nu	hat (MLE)	140.1			n	u star (bias	corrected)	139.1			
174		A	djusted Lev	el of Signif	icance (β)	0.0487									
175		Approxima	ate Chi Squ	are Value (139.11, α)	112.9		Adjus	ted Chi Sau	are Value	(139.11, β)	112.7			
176	95% G	amma Ann	roximate U(CL (use whe	en n>=50)	0 267	95	5% Gamma	Adjusted	ICL (use w	when $n < 50$	0 267			
170	0070 00	unina / tpp				0.207			a / lajuoloa	002 (000 1		0.207			
1//				Cations											
178				Estima	ites of Ga	mma Para	meters usi	ng KM Est	Innates			-			
179				N	lean (KM)	0.217					SD (KM)	0.444			
180				Varia	ance (KM)	0.197				SE of I	Mean (KM)	0.0331			
181				ŀ	k hat (KM)	0.238					k star (KM)	0.237			
192				nı	Lhat (KM)	86.51				nı	ustar (KM)	86 42			
102				thete	bot (KM)	0.011				thet	a otar (KM)	0.012			
183			0000	uneta		0.911			0001	uieta		0.912			
184			80% ga	mma perce	entile (KM)	0.309			90% ga	amma perc	entile (KM)	0.652			
185			95% ga	mma perce	entile (KM)	1.065			99% ga	amma perc	entile (KM)	2.17			
186															
187					Gamma	Kaplan-M	eier (KM)	Statistics							
199	Approximate Chi Square Value (86.42 g) 65.99 Adjusted Chi Square Value (86.42 g)							65 85							
100	5% Com~		nate KM I V		$(, \infty)$	0.201	05%	Samma Ad	iusted KM		(hen n < 50)	0.201			
189	o /o Gamin			SE (USE WIR	un 1/ = 50)	0.204	33700	aunina Au	Justeu Mivi-	COL (USE N	men (1×30)	0.204			
190				<u> </u>				-							
191				Logno	rmal GOF	Test on D	etected O	bservation	s Only						
192		Shapiro	o Wilk Appro	oximate Tes	st Statistic	0.94			Shapiro Wi	lk GOF Te	st				
193			5%	Shapiro Wi	lk P Value	0.00106	Deteo	cted Data N	Not Lognori	nal at 5% S	Significance	Level			
19/			I	_illiefors Te	st Statistic	0.0785			Lilliefors	GOF Test					
105			5% 1	illiefors Crit	ical Value	0.0962	Detecto	ed Data an	pear Loong	ormal at 5%	Significant	e evel			

106	А	В		C Det	tecte	D d Data	E	r Apr	F	G	al at !	H 5% Sic	Inifica	I	Level	J	K		L
197						<u> </u>							,						
198						Logn	ormal F	ROS S	Statistics	Using Imp	uted	Non-E	Detect	S					
199					Mear	n in Or	riginal So	cale	0.215						Me	an in	Log Scale	e -	-3.858
200					SD) in Or	riginal So	cale	0.446						:	SD in	Log Scale	e	2.534
201	9	5% t UCL	(ass	umes r	norma	ality of	f ROS d	ata)	0.27				95%	b Per	centile	Boot	tstrap UCI		0.272
202				959	% BC		otstrap (JCL	0.282						95%	Boots	strap t UCI	-	0.281
203				9	15% F	1-UCL	. (Log R	08)	1.08										
204			Sta	tistics	usin	a KM	estimate	es or		Data and	Assu	mina l	oano	rmal	Distrik	outior	1		
205			010	10000		M Me	an (logo	aed)	-3.25		loou		logno		Diotric	KM	Geo Meai	n	0.0388
200						KMS	SD (logo	ged)	1.785				95%	Crit	ical H	Value	e (KM-Log)	2.963
208		KM	1 Sta	ndard I	Error	of Me	an (logg	ged)	0.133					g	95% H	UCL	(KM -Log)	0.282
209						KMS	SD (logg	ged)	1.785				95%	5 Crit	ical H	Value	e (KM-Log)	2.963
210		KM	1 Sta	ndard I	Error	of Me	an (logg	ged)	0.133										
211																			
212									DL/2 S	tatistics									
213				DL/2	Norr	nal	ininal C	-	0.014					_og-	ranst	orme		_	2.62
214					iviear		iginal So	cale	0.214						IVIE		Log Scale	9 -	·3.62
215			959	% t UC		sume	s norma	ality)	0.447							50 III 15% F	I-Stat UCI	-	0.389
210			DL/	2 is no	ot a re	ecomr	nended	meth	nod. provi	ded for co	mpai	isons	and h	istor	ical re	ason	s	-	
218									71		•								
219						N	lonpara	metri	ic Distribu	tion Free	UCL	Statis	tics						
220				C	Detec	ted D	ata app	ear G	amma Di	stributed	at 5%	5 Signi	ficanc	e Le	vel				
221																			
222								S	uggested	UCL to U	se								
223		95	5% K	M App	roxim	nate G	iamma l	JCL	0.284										
224	Note: Cu	anationa		سمانه مر ا	-		m of a O	E0/ 1			ا مام				*			050/	
225	Note. Su	ggestions	reya	Reco	mme	ndatio	ns are h			oviueu io i	ta dis	tributio		d ske			ppropriate	95%	3 UCL.
220	These r	ecommen	datio	ons are	base	ed upc	on the re	sults	of the sin	ulation st	Jdies	summ	narize	d in S	Sinah.	s. Maich	nle, and Le	ee (2	2006).
228	lowever, s	imulation	s res	ults wil	ll not	cover	all Real	l Wor	ld data se	ts: for add	itiona	l insig	ht the	user	may v	vant t	o consult	a sta	itisticia
229																			
230	BghiP																		
231																			
232									General	Statistics									
233			Т	otal Nu	umbe	er of O	bservati	ions	182				Numb	er of	Distin	ct Ob	servation	s	74
234				Niccore	N	lumbe	r of Dete	ects	76				N	N	umber	of No	on-Detect	s 1	06
235				NUM	iber c	Minir		ecis	/3				NUM	ber o	Minim		Jon Detect	s +	2
236						Mavir		tect	16.2						Mavim		Jon-Detec	,L +	0.02
237						Varia	nce Dete	ects	8.358						Perce	ent No	on-Detect	s	58.249
239						Me	ean Dete	ects	1.765							્	SD Detect	s	2.891
240						Med	lian Dete	ects	0.572							(CV Detect	s	1.638
241					S	kewn	ess Dete	ects	3.376						ŀ	Curtos	sis Detect	s	14
242				Me	ean c	of Logo	ged Dete	ects	-0.621					;	SD of	Logge	ed Detect	s	1.746
243													_					·	
244							No	ormal	GOF Tes	t on Dete	cts O	nly							
245				Sha	ipiro	Wilk T	est Stat	istic	0.61	No	rmal	GOF	Test o	n De	tected	l Obs	ervations	Onl	y
246				5%	6 Sha	apiro V	Vilk P Va	alue	0	De	tecte	d Data	Not N	lorm	al at 5	% Sig	gnificance	Leve	əl
247				=0/	Lillie	fors T	est Stat	istic	0.273				Lillie	efors	GOF	Test			
248				5%	LIIIe	TORS C	ritical Va	alue	0.102		tecte	u Data		vorm	ai at 5	% Sig	gnificance	Leve	31
249						Det	ected D	ata f	NOL NORMA	แลเว% 5	ynitio	ance	revel						
∠50 251		ĸ	anle	n-Meic	er (Kl	M) Sta	tistice .	Isina	Normal	ritical Val		and off	her Nr	ากกอา	ametr	ic LIC	ls		
252		N	apid		(14	, 514	KM M	ean	0.749					(M Si	tandar	d Err	or of Mean	n	0.153
253							KM	SD	2.046						95%	KM (BCA) UCI		1.037
254						95%	KM (t) l	JCL	1.001			95%	6 KM ((Perc	entile	Boots	strap) UCI		1.02
255						95%	KM (z) l	JCL	1					95%	% KM	Boots	strap t UCI		1.096
256				90%	% KN	1 Cheb	byshev l	JCL	1.207					95%	6 KM (Cheby	yshev UCI		1.414
257				97.5%	% KN	1 Cheb	byshev l	JCL	1.702					99%	6 KM (Cheby	shev UCI		2.268
258																			
259						Gar	nma GC	DF Te	ests on De	etected O	oserv	ations	Only						
260						A-D T	est Stat	istic	1.058			An	derso	n-Da	rling C	iOF 7	Test		

	А	В	С	D	E	F	G	Н	I	J	K	L
261				5% A-D Cri	tical Value	0.815	Detected	Data Not G	amma Dis	tributed at 5	5% Significa	ance Level
262				K-S Te	st Statistic	0.114		Ko	olmogorov-	Smirnov G	OF	
263				5% K-S Cri	tical Value	0.108	Detected	Data Not G	amma Dis	tributed at 5	5% Significa	ance Level
264				Detected D	ata Not Ga	amma Dist	ributed at	5% Sianifi	cance Leve			
265												
266					Gamma S	tatistics or	Detected	Data Only	,			
267				k	hat (MLF)	0.53			k star	(bias corre	cted MLE)	0.517
207				Theta	hat (MLE)	3 334			Theta star	(bias corre	cted MLE)	3 4 1 2
200				nu	hat (MLE)	80.40			nicia stai	Letar (hias	corrected)	78.64
209				Moa		1 765					conected)	70.04
270				wea	n (uelecis)	1.705					-	
2/1				Com		totiotico u	oina Imput	od Non De	tooto			
272		000	0	Gan								
273		GRU	S may not i	be used wh	en data set			many ueu		ns at mulup		<15.00)
2/4	GRUS	s may not b		n kstar or u		nall such a	s < 1.0, esp	becially who			mail (e.g.,	<15-20)
275			For suc	n situations	s, GROS m	ethod may	yield incor	rect values	s of UCLs a	nd BTVS		
276				Ihis	is especial	ly true whe	en the sam	ple size is s	small.			
277	Fo	r gamma d	istributed de	etected data	a, BTVs and	d UCLs ma	ly be comp	outed using	gamma dis	stribution or	1 KM estim	ates
278					Minimum	0.01					Mean	0.743
279					Maximum	16.2					Median	0.01
280					SD	2.053					CV	2.764
281				k	hat (MLE)	0.266			k star	(bias corre	cted MLE)	0.265
282				Theta	hat (MLE)	2.794			Theta star	(bias corre	cted MLE)	2.801
283				nu	hat (MLE)	96.8			nı	u star (bias	corrected)	96.54
284		1	Adjusted Le	vel of Signi	ficance (β)	0.0487						
285		Approxii	mate Chi So	uare Value	e (96.54, α)	74.88		Adju	sted Chi Sc	luare Value	(96.54, β)	74.73
286	95% G	iamma App	proximate U	CL (use wh	en n>=50)	0.958	95	5% Gamma	a Adjusted	JCL (use w	hen n<50)	0.96
287												
288				Estim	ates of Ga	mma Para	meters usi	ng KM Est	imates			
289				N	Mean (KM)	0.749					SD (KM)	2.046
290				Vari	ance (KM)	4.185				SE of M	Mean (KM)	0.153
291					k hat (KM)	0.134				k	star (KM)	0.135
292				n	u hat (KM)	48.77				nı	u star (KM)	49.3
293				thet	a hat (KM)	5.589				theta	a star (KM)	5.529
294			80% ga	amma perce	entile (KM)	0.745			90% ga	amma perce	entile (KM)	2.183
295			95% ga	amma perce	entile (KM)	4.198			99% ga	amma perce	entile (KM)	10.17
296									-			<u> </u>
297					Gamma	Kaplan-M	eier (KM) S	Statistics				
298		Approxii	mate Chi So	uare Value	e (49.30, α)	34.18		Adju	sted Chi Sc	luare Value	(49.30, β)	34.08
299	5% Gamı	na Approxi	imate KM-U	CL (use wh	en n>=50)	1.08	95% G	Gamma Ad	justed KM-I	JCL (use w	hen n<50)	1.083
300												
301				Logno	ormal GOF	Test on D	etected O	bservation	s Only			
302		Shapir	ro Wilk Appı	oximate Te	st Statistic	0.947		:	Shapiro Wi	lk GOF Tes	st	
303			5%	Shapiro W	ilk P Value	0.00745	Deteo	cted Data N	Not Lognorr	nal at 5% S	ignificance	Level
304				Lilliefors Te	st Statistic	0.0795			Lilliefors	GOF Test		
305			5%	_illiefors Cri	tical Value	0.102	Detecte	ed Data ap	pear Logno	rmal at 5%	Significand	ce Level
306			Det	ected Data	appear Ap	proximate	Lognorma	l at 5% Sig	gnificance	_evel		
307												
308				Logno	ormal ROS	Statistics	Using Impu	uted Non-[Detects			
309			Ν	lean in Oriç	ginal Scale	0.744				Mean in	Log Scale	-3.444
310				SD in Oriç	ginal Scale	2.053				SD in	Log Scale	3.013
311	ç	5% t UCL	(assumes n	ormality of	ROS data)	0.996			95% Per	centile Boot	strap UCL	1.007
312			95%	6 BCA Boot	tstrap UCL	1.082				95% Boots	trap t UCL	1.095
313			9	5% H-UCL ((Log ROS)	8.109						
314							•					·
315			Statistics	using KM e	stimates o	n Logged I	Data and A	ssuming L	ognormal	Distribution)	
316				KM Mea	n (logged)	-2.538				KM	Geo Mean	0.0791
317				KM S	D (logged)	1.972			95% Criti	cal H Value	(KM-Log)	3.177
318		KM	Standard E	rror of Mea	in (logged)	0.147			9	5% H-UCL	(KM -Log)	0.881
319				KM S	D (logged)	1.972			95% Criti	cal H Value	(KM-Log)	3.177
320		KM	Standard E	Fror of Mea	in (logged)	0.147						
321					,							
322						DL/2 S	tatistics					
323			DL/2	Normal					DL/2 Log-1	ransforme	d	
324			Ν	lean in Orig	ginal Scale	0.743				Mean in	Log Scale	-2.941
325				SD in Oriç	ginal Scale	2.053				SD in	Log Scale	2.268

		_	_		—		—	_	-	0	<u> </u>			_			
000	A	В	050/			D				G	I H		<u> </u>		J 05%		L 1.252
326			95%		. (A:	ssume	SHOIII	anty)	0.995						9570		1.255
327				2 is not	ar	ecomn	nendeo		noa, provid	ded for co	mpariso	ns a	and hist	orica	al reasor	IS	
328																	
329						N	lonpara	amet	ric Distribu	tion Free	UCL Sta	atisti	cs				
330			Det	tected	Dat	a appe	ear App	oroxir	mate Logno	ormal Dist	ributed	at 5°	% Signi	ficaı	nce Leve	ł	
331																	
332								S	Suggested	UCL to U	se						
333							KM H-	UCL	0.881								
334																I	
335	Note: Suc	aestions	rega	rdina tł	ne s	electio	n of a S	95%	JCL are pr	ovided to	nelp the	use	r to sele	ct th	ne most a	appropriate 9	5% UCL.
336		55	- 3-	Recor	nme	endatio	ons are	base	d upon dat	a size da	ta distrib	utio	n and s	kew	ness	PP -P	
337	These re	commen	datio	ns are	has	ed unc	n the r	esult	s of the sim	ulation st	idies su	mm	arized ir	n Sir	ngh Maic	the and lee	(2006)
220	However s	imulation	c roci	ulte will	Ind	cover			rld data so	te: for add	itional in	eiah			av want	to consult a	statistician
330	10000001, 3	intulations	31030		1101					13, 101 200		Sign	it the us				3101010101
339	DVE																
340	DKF																
341									0	04-4-4-4							
342						()			General	Statistics						1	
343			10	otal Nu	mbe	er of O	bserva	tions	182			Γ	Number	of D	Distinct O	oservations	66
344					1	lumbe	r of De	tects	68					Nur	nber of N	on-Detects	114
345				Numb	oer	of Disti	inct De	tects	64				Number	r of [Distinct N	ion-Detects	2
346						Minir	num D	etect	0.011					Ν	/linimum	Non-Detect	0.01
347						Maxir	num D	etect	1.14					Μ	aximum	Non-Detect	0.4
348						Variar	nce De	tects	0.0658					F	Percent N	lon-Detects	62.64%
349						Me	ean De	tects	0.234							SD Detects	0.256
350						Med	lian De	tects	0.129							CV Detects	1.097
351					Ş	Skewne	ess De	tects	1.644						Kurto	sis Detects	2.198
352				Ме	an	of Logo	aed De	tects	-2.052					SI	D of Logo	ed Detects	1.172
353							, 									,	
354							N	orma	GOF Tes	t on Dete	cts Only						
255				Shar	niro	Wilk T	est Sta	tistic	0 783	No	rmal GC)F T	est on [Dete	ected Oh	servations (July
355				5%	Sh	aniro M		/200	1 5/3E-13		tected D		Not Nor	mal	at 5% Si	anificance l	ovol
350				J /0		apilo V		tictic	0.206	De	lected D	ala	Lilliofo	ma m G			
357				E 0/ 1		fore C	ritical V		0.200	De	tastad D	oto		is G		anificance l	<u></u>
358				5% L			nucar v	alue	0.107	De		ลเล		mai	at 5% SI	gnilicance L	evei
359						Det		Jata	NOT NORMA	li at 5% 5	gnifican	Cel	-evei				
360																	
361		K	aplar	1-Meie	r (K	M) Sta	tistics	using) Normal C	ritical Val	ues and	oth	er Nonp	bara	metric U	CLS	
362							KMN	Nean	0.0938				KM	Sta	ndard Er	ror of Mean	0.0142
363							KN	I SD	0.19					9	95% KM	(BCA) UCL	0.119
364						95%	KM (t)	UCL	0.117		ç	95%	KM (Pe	erce	ntile Boo	tstrap) UCL	0.118
365						95% I	KM (z)	UCL	0.117				9	5%	KM Boot	strap t UCL	0.123
366				90%	۶KN	/I Cheb	yshev	UCL	0.136				9	5% I	KM Cheb	yshev UCL	0.156
367				97.5%	5 KN	/I Cheb	yshev	UCL	0.182				99	9% I	KM Cheb	yshev UCL	0.235
368																	
369						Gar	nma G	OF T	ests on De	etected O	bservati	ons	Only				
370						A-D T	est Sta	tistic	0.793			And	lerson-D	Darli	ing GOF	Test	
371					5%	A-D C	ritical V	/alue	0.782	Detected	Data No	ot Ga	amma D	Distri	ibuted at	5% Significa	ance Level
372						K-S T	est Sta	tistic	0.103			Ko	Imogorc	ov-S	mirnov (GOF	
373					5%	K-S C	ritical V	/alue	0.111	etected d	ata appe	ear (Gamma	Dis	tributed a	at 5% Signifi	cance Leve
374				Dete	ecte	d data	follow	App	r. Gamma	Distributio	n at 5%	Sig	nificanc	æ Lo	evel		
375								•••				-					
376							Gam	ma S	tatistics or	Detected	l Data C) nlv					
377							k hat (N	MLE)	0.967			,	k st	tar (bias corr	ected MLE)	0.934
378						Thet	a hat (N	MIF)	0 242			•	Theta st	tar (hias corr	ected MLE)	0.25
370						n	u hat (N		131.5					nı,	star (hias	corrected)	127.1
379						Mor	an (det		0.234					nu		, concelea)	127.1
36U 204						INICO		0013)	0.204								
381						0		000	Statiatica		tod Nor	D-*	lanta				
382		000	18		he ·		hon de		has > 500				beered	tion	ot mult		
383	0000	GRU	Jo ma		Je u	ised Wi		ia sei	nas > 50%		nany ti		buservai				<15.00
384	GRUS	may not b	e use	ea whe	n K	star of (uetects	s is sr	nail such a	s < 1.0, es	pecially	wne	n the sa	impl	e size is	small (e.g., ·	<15-20)
385			F	-or suc	n si	tuation	is, GRO	JS m	ethod may	yield inco	rrect val	ues	of UCLs	s an	a BIVs		
386						This	s is esp	pecia	lly true whe	en the sam	ple size	is s	mall.				
387	For	gamma d	listrib	uted de	etec	ted da	ta, BT∖	/s an	d UCLs ma	y be com	outed us	ing	gamma	dist	ribution o	n KM estima	ates
388							Minii	mum	0.01							Mean	0.0936
389							Maxi	mum	1.14							Median	0.01
390		-						SD	0.19						-	CV	2.03

						-						-
	A	В	С	D	E	F	G	Н		J	K	L
391				K	nat (MLE)	0.496			K star	(bias corre	Cted MLE)	0.491
392				Iheta	hat (MLE)	0.189			I heta star	(bias corre	cted MLE)	0.191
393				nu	hat (MLE)	180.5			n	u star (bias	corrected)	1/8.8
394		A	Adjusted Le	vel of Signi	ficance (β)	0.0487						
395		Approxima	ate Chi Squ	are Value	(178.81, α)	148.9		Adjust	ed Chi Squ	are Value	(178.81, β)	148.7
396	95% G	amma App	roximate U	CL (use wh	ien n>=50)	0.112	95	5% Gamma	Adjusted	UCL (use w	/hen n<50)	0.113
397												
398				Estim	ates of Ga	mma Para	meters usi	ng KM Est	imates			1
399					Mean (KM)	0.0938					SD (KM)	0.19
400				Var	iance (KM)	0.0359				SE of I	Mean (KM)	0.0142
401					k hat (KM)	0.245					k star (KM)	0.245
402				n	u hat (KM)	89.16				n	u star (KM)	89.02
403				thet	a hat (KM)	0.383				theta	a star (KM)	0.384
404			80% ga	imma perc	entile (KM)	0.135			90% ga	amma perc	entile (KM)	0.282
405			95% ga	amma perc	entile (KM)	0.457			99% ga	amma perc	entile (KM)	0.925
406												
407					Gamma	Kaplan-M	eier (KM) 🗧	Statistics				
408		Approxin	nate Chi Sq	uare Value	e (89.02, α)	68.27		Adjus	sted Chi So	quare Value	e (89.02, β)	68.12
409	5% Gamm	na Approxir	mate KM-U	CL (use wh	nen n>=50)	0.122	95% 0	Gamma Adj	usted KM-	UCL (use w	vhen n<50)	0.123
410												
411				Logn	ormal GOF	Test on D	etected O	bservation	s Only			
412		Shapiro	o Wilk Appr	oximate Te	est Statistic	0.965			Shapiro Wi	lk GOF Te	st	
413		•	5%	Shapiro W	ilk P Value	0.152	Detecte	ed Data ap	bear Loand	ormal at 5%	Significant	ce Level
414				Lilliefors Te	est Statistic	0.0516			Lilliefors	GOF Test		
415			5% L	illiefors Cr	itical Value	0.107	Detecte	ed Data ap	pear Loanc	ormal at 5%		ce Level
416				Detecte	d Data app	ear Logno	rmal at 5%	Significar	ice Level			
410				2010010	a bata app	our Logno		, eigninear				
417					ormal ROS	Statistics	lsina Imn	uted Non-F)etects			
410			N	lean in Ori	ninal Scale	0.0926			010010	Mean in		-4 16
419				SD in Ori	ninal Scale	0.101				SD in		2 076
420	0	5% + LICL (assumes n	ormality of		0.131			05% Dor	centile Boo		0.117
421		5% (UCL (0.110			35 % F en	Q5% Boots		0.117
422			30 // 05			0.12				33 % D0018		0.12
423			90	7/0 TI-UCL		0.224						
424			Otatiatian .		-)			Distribution		
425			Statistics (Jata and P	ssuming L	.ognormai	Distribution	1 	0.0001
426					an (logged)	-3.648			050/ 0 :::	KIVI	Geo Mean	0.0261
427			0	KIM S	D (logged)	1.420			95% Criti		3 (KIVI-LOG)	2.574
428		KM	Standard E	rror of Mea	an (logged)	0.107			9	5% H-UCL	(KIM -LOG)	0.0946
429			<u> </u>	KM S	D (logged)	1.426			95% Crit	cal H Value	e (KM-Log)	2.574
430		KM	Standard E	rror of Mea	an (logged)	0.107						
431												
432				<u> </u>		DL/2 S	tatistics				<u> </u>	
433			DL/2	Normal					DL/2 Log-1	ransforme	:d	
434			N	lean in Ori	ginal Scale	0.0916				Mean in	Log Scale	-4.065
435				SD in Ori	ginal Scale	0.192				SD in	Log Scale	1.736
436			95% t UCL	(Assumes	normality)	0.115				95% H	I-Stat UCL	0.113
437			DL/2 is not	a recomm	ended met	hod, provi	ded for cor	mparisons	and histori	cal reason	S	
438												
439				No	onparameti	ric Distribu	tion Free l	JCL Statist	tics			
440			Detected	I Data app	ear Approx	imate Gan	nma Distril	buted at 5%	6 Significa	nce Level		
441												
442					5	Suggested	UCL to Us	e e				
443		959	% KM Appro	oximate Ga	amma UCL	0.122						
444												
445		Wh	en a data s	et follows a	an approxin	nate (e.g., r	normal) dis	tribution pa	assing one	of the GOF	test	
446	When	applicable	, it is sugge	sted to use	a UCL bas	sed upon a	distributior	n (e.g., gan	nma) passi	ng both GC	F tests in F	roUCL
447	1							-				
448	Note: Su	ggestions i	regarding th	e selection	n of a 95% l	JCL are pr	ovided to h	elp the use	er to select	the most a	ppropriate 9	95% UCL.
449		-	Recon	nmendatior	ns are base	d upon dat	a size, dat	a distributio	on, and ske	wness.	· ·	
450	These r	ecommend	ations are	based upor	n the result	s of the sim	ulation stu	idies summ	arized in S	ingh, Maicl	hle, and Lee	e (2006).
451	lowever.	simulations	results will	not cover a	all Real Wo	rld data se	ts; for addi	tional insid	nt the user	may want t	to consult a	statisticiar
452							,		2 3001	.,		
452	Indeno											
453												
404						General	Statistice					
400	1					Gonordi	~~~~~~					

1-0	Δ	вС		F	G	н	1	I K	
166	~	Total Numbr	er of Observation	182	u		Number of	Distinct Observations	67
450			Jumber of Detect	70				mbor of Non Dotoots	112
457			of Distingt Detect				Number of	Distinct Non-Detects	112
458		Number	of Distinct Detects	60			Number of	Distinct Non-Detects	2
459			Minimum Detec	t 0.021				Minimum Non-Detect	0.02
460			Maximum Detec	t 3.54				Maximum Non-Detect	0.021
461			Variance Detects	0.611				Percent Non-Detects	61.54%
462			Mean Detects	0.64				SD Detects	0.782
463			Median Detects	0.264				CV Detects	1.222
464		Ş	Skewness Detects	1.719				Kurtosis Detects	2.675
465		Mean	of Logged Detects	-1.271			5	SD of Logged Detects	1.422
466									1
467			Norm	al GOF Tes	t on Detec	ts Only			
468		Shaniro	Wilk Test Statistic	0 765	Nor	mal GOF 1	Test on De	tected Observations (Only
460		5% Sh	apiro Wilk P Value	3 109F-15	Det	ected Data	Not Norma	al at 5% Significance I	evel
403			ofors Test Statistic	0 219	201		Lilliefors	GOF Test	
470		5% Lillie	fore Critical Value	0.106	Det	octod Data	Not Norma	al at 5% Significance I	ovol
471		5 % Lille	Detected Dete					ar at 5 % Significance L	evei
472			Delected Data	NOL NOTTIA		ynnicance	Levei		
4/3				- Normal C			NI		
474		Kapian-Meier (K	M) Statistics Usin	g Normal C	ritical valu	les and oth	er Nonpar		
475			KM Mear	0.258			KM St	andard Error of Mean	0.0424
476			KM SL	0.568				95% KM (BCA) UCL	0.333
477			95% KM (t) UCI	. 0.329		95%	6 KM (Perc	entile Bootstrap) UCL	0.33
478			95% KM (z) UCI	. 0.328			95%	6 KM Bootstrap t UCL	0.345
479		90% KN	/I Chebyshev UCI	0.386			95%	KM Chebyshev UCL	0.443
480		97.5% KN	/ Chebyshev UCI	. 0.523			99%	KM Chebyshev UCL	0.68
481									
482			Gamma GOF	Tests on De	etected Ob	servations	Only		
483			A-D Test Statistic	0.947		And	derson-Dai	ling GOF Test	
484		5%	A-D Critical Value	0.795	Detected	Data Not G	amma Dist	tributed at 5% Signific	ance Leve
485			K-S Test Statistic	0.11		Ko	lmoaorov-	Smirnov GOF	
486		5%	K-S Critical Value	0 111)etected da	ata annear	Gamma Di	stributed at 5% Signifi	cance Lev
400		Detecte	d data follow Apr	or Gamma	Distributio	n at 5% Sic	inificance l	evel	
407		201000		aanna	Diotribution		Jinneanee		
400			Gamma	Statistics or	Detected	Data Only			
409			k bat (MLE	0 720		Data Only	k etar	(bias corrected MLE)	0 707
490			Thota hat (MLE	0.723			Thota star	(bias corrected MLE)	0.707
491				100			Theta Star		0.905
492				102			nu	i star (bias corrected)	98.90
493			Mean (detects	0.64					
494									
495				A					
496			Gamma ROS	Statistics u	sing Imput	ed Non-De	tects		
497		GROS may not be u	Gamma ROS sed when data se	Statistics used to be a set of the set of th	sing Imput 6 NDs with	ed Non-De many tied	observation	ns at multiple DLs	
	GROS r	GROS may not be unay not be used when ks	Gamma ROS ised when data se star of detects is s	Statistics us at has > 50% mall such a	sing Imput 6 NDs with s <1.0, esp	ed Non-De many tied becially whe	t ects observation en the sam	ns at multiple DLs ple size is small (e.g.,	<15-20)
498	GROS r	GROS may not be u nay not be used when ks For such si	Gamma ROS ised when data se star of detects is s tuations, GROS r	Statistics us at has > 50% mall such a nethod may	sing Impute 6 NDs with s <1.0, esp yield incor	ed Non-De many tied becially whe rect values	observation observation of UCLs a	ns at multiple DLs ple size is small (e.g., nd BTVs	<15-20)
498 499	GROS r	GROS may not be u nay not be used when ks For such si	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia	Statistics us at has > 50% mall such a nethod may ally true whe	sing Impute 6 NDs with s <1.0, esp yield incor en the samp	ed Non-De many tied pecially whe rect values ple size is s	etects observation en the sam of UCLs a small.	ns at multiple DLs ple size is small (e.g., nd BTVs	<15-20)
498 499 500	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs a	Statistics us at has > 50% mall such a nethod may ally true whe nd UCLs ma	sing Imput 6 NDs with s <1.0, esp yield incor en the samp by be comp	ed Non-De many tied pecially whe rect values ple size is s puted using	etects observation on the sam of UCLs a small. gamma dis	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim	<15-20) ates
498 499 500 501	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs a Minimun	Statistics used thas > 50% mall such a method may ally true where and UCLs mathod may ally true where and UCLs mathod mat	sing Imput 6 NDs with s <1.0, esp yield incor en the samp by be comp	ed Non-De many tied pecially whe rect values ple size is s puted using	entects observation on the samp of UCLs a small. gamma dis	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean	<15-20) ates 0.252
498 499 500 501 502	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs a Minimun Maximun	Statistics u it has > 50% mall such a nethod may ally true whe nd UCLs ma 0.01 n 3.54	sing Imput 6 NDs with s <1.0, esp yield incor yield incor n the samp y be comp	ed Non-De many tied becially whe rect values ple size is s outed using	tects observation en the sam of UCLs a small. gamma dis	ns at multiple DLs ole size is small (e.g., nd BTVs stribution on KM estim Mean Median	<15-20) ates 0.252 0.01
498 499 500 501 502 503	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs a Minimun Maximun	Statistics u at has > 509 mall such a method may ally true whe ad UCLs mad a 0.01 a 3.54 0 0.572	sing Imput 6 NDs with s <1.0, esp yield incor n the samp y be comp	ed Non-De many tied becially whe rect values ple size is s outed using	tects observation on the samp of UCLs a small. gamma dis	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV	<15-20) ates 0.252 0.01 2.268
498 499 500 501 502 503 504	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ited data, BTVs a Minimun Maximun SE k hat (MLE	Statistics u at has > 509 mall such a method may ally true whe ad UCLs mad a 0.01 a 0.0572 0.346	sing Imput 6 NDs with s <1.0, esp yield incor n the samp by be comp	ed Non-De many tied becially whe rect values ple size is s puted using	tects observation on the samp of UCLs a small. gamma dis k star	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE)	<15-20) ates 0.252 0.01 2.268 0.344
498 499 500 501 502 503 504 505	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ited data, BTVs au Minimun Maximun SE k hat (MLE Theta hat (MLE	Statistics u at has > 50% mall such a method may ally true whe ad UCLs mad ad 0.01 ad 3.54 b 0.572 ad 0.346 b 0.729	sing Imput 6 NDs with s <1.0, esp yield incor n the samp y be comp	ed Non-De many tied becially whe rect values ple size is s puted using	tects observation on the samp of UCLs a small. gamma dis k star Theta star	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE)	<15-20) ates 0.252 0.01 2.268 0.344 0.733
498 499 500 501 502 503 504 505 506	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ited data, BTVs au Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE	Statistics u at has > 50% mall such a method may ally true whe ad UCLs mad a a b 0.01 a 0.0572 0.346 0.729 126	sing Imput 6 NDs with s <1.0, esp yield incor n the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using	tects observation on the samp of UCLs a small. gamma dis k star Theta star	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Median CV (bias corrected MLE) (bias corrected MLE) u star (bias corrected)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3
498 499 500 501 502 503 504 505 506 507	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ited data, BTVs au Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (ß	Statistics u at has > 50% mall such a method may ally true whe ad UCLs mad a a 0.01 a 0.0572 0.346 0.729 126 0.0487	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using	tects observation on the samp of UCLs a small. gamma dis k star Theta star nu	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Median CV (bias corrected MLE) (bias corrected MLE) a star (bias corrected)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3
498 499 500 501 502 503 504 505 506 507 508	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec Adjusted Level	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ited data, BTVs au Minimun Maximun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28 g	Statistics u at has > 50% mall such a method may ally true whe ad UCLs mad ad UCLs mad ad 0.01 ad 3.54 b 0.572 ad 0.346 ad 0.729 126 ad 0.0487 100.4	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using	tects observation en the sam of UCLs a small. gamma dis k star Theta star nu ed Chi Squ	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Median CV (bias corrected MLE) (bias corrected MLE) u star (bias corrected) are Value (125.28.6)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3
498 499 500 501 502 503 504 505 506 506 507 508	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec Adjusted Level	Gamma ROS ised when data se star of detects is se tuations, GROS r This is especia ted data, BTVs at Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50)	Statistics u it has > 509 mall such a nethod may ally true whe nd UCLs ma nd UCLs ma nd 0.01 nd 3.54 0 0.572 0.346 0.729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nu ed Chi Squ	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315
498 499 500 501 502 503 504 505 506 507 508 509	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL	Gamma ROS ised when data se star of detects is se tuations, GROS r This is especia ted data, BTVs at Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50	Statistics u at has > 509 mall such a nethod may ally true whe ad UCLs mad 0.011 3.54 0.0572 0.346 0.729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nt ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 125.3 100.3 0.315
498 499 500 501 502 503 504 505 506 507 508 509 510	GROS r	GROS may not be u nay not be used when ks For such si jamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50	Statistics u at has > 509 mall such a nethod may ally true whe ad UCLs ma a 0.01 a 0.01 a 0.01 a 0.01 a 0.021 a 0.0346 0.729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nt ed Chi Squ Adjusted t	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) u star (bias corrected) are Value (125.28, β) JCL (use when n<50)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 125.3 100.3 0.315
498 499 500 501 502 503 504 505 506 507 508 509 510 511	GROS r For 95% Ga	GROS may not be u nay not be used when k For such si jamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga	Statistics u at has > 509 mall such a nethod may ally true whe ad UCLs mad 0.01 3.54 0.0572 0.346 0.729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor on the samp y be comp y be comp 95 95 95	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nu ed Chi Squ Adjusted I	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315
498 499 500 501 502 503 504 505 506 507 508 509 510 511 511	GROS r For 95% Ga	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM	Statistics u attistics u at has > 509 mall such a nethod may ally true when ad UCLs man a 0.01 3.54 0.572 0.346 0.729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust Adjust i% Gamma	tects observation of UCLs a small. gamma dis k star Theta star nu ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.568
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 512	GROS r For 95% Ga	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM	Statistics u attistics u	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s uted using Adjust o% Gamma	tects observation of UCLs a small. gamma dis k star Theta star nu ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50) SD (KM) SE of Mean (KM)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.568 0.0424
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514	GROS r For 95% Ga	GROS may not be u nay not be used when k For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL o	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM k hat (KM	Statistics u it has > 509 mall such a nethod may ally true when ad UCLs man ad UCLs man ad 0.01 3.54 0.0729 126 0.0487 100.4 0.315	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s outed using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nt ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.315 0.568 0.0424 0.207
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515	GROS r For s 95% Ga	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun Maximun SE k hat (MLE Theta hat (MLE nu hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM k hat (KM nu hat (KM	Statistics u et has > 509 mall such a nethod may ally true when d UCLs man a a 0.01 3.54 0.0729 126 0.0487 100.4 0.315 amma Para 0.258 0.323 0.207 75.34	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 95	ed Non-De many tied pecially whe rect values ple size is s outed using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nt ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (bias corrected MLE) a star (bias corrected) are Value (125.28, β) JCL (use when n<50) SD (KM) SE of Mean (KM) k star (KM) nu star (KM)	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.568 0.0424 0.207 75.43
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516	GROS r For s 95% Ga	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL (Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun Maximun Maximun SE k hat (MLE Theta hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM k hat (KM nu hat (KM	Statistics u et has > 509 mall such a nethod may anethod may ally true when ad UCLs man ad UCLs man ad UCLs man ad UCLs man ad 0.01 a 3.54 ad 0.729 b 0.346 ad 0.729 b 126 ad 0.0487 b 0.0488 b 0.258 ad 0.223 b 0.223 b 0.207 b 1.249	sing Imput 6 NDs with s <1.0, esp yield incor en the samp by be comp y be comp 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis k star Theta star nt ed Chi Squ Adjusted U	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (b	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.315 0.568 0.0424 0.207 75.43 1.247
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517	GROS r For s	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL of 80% gamn	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs ar Minimun Maximun Maximun Maximun Maximun Maximun SE k hat (MLE Theta hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM variance (KM nu hat (KM nu hat (KM theta hat (KM ta percentile (KM	Statistics u et has > 509 mall such a nethod may anethod may anetho	sing Imput 6 NDs with s <1.0, esp yield incor en the samp by be comp y be comp 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis gamma dis k star Theta star nt ed Chi Squ Adjusted U imates	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (b	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 0.315 0.568 0.0424 0.207 75.43 1.247 0.782
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL of 80% gamn 95% gamn	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs au Minimun Maximun Maximun SE k hat (MLE Theta hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM variance (KM nu hat (KM nu hat (KM nu hat (KM nu hat (KM nu hat (KM nu hat (KM theta hat (KM	Statistics u tt has > 509 mall such a nethod may anethod may anetho	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis gamma dis k star Theta star nt ed Chi Squ Adjusted to imates	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected MLE) (b	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 125.3 100.3 0.315 0.568 0.0424 0.207 75.43 1.247 0.782 2.791
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519	GROS r	GROS may not be u nay not be used when ks For such si gamma distributed detec Adjusted Level Approximate Chi Square mma Approximate UCL of 80% gamn 95% gamn	Gamma ROS ised when data se star of detects is s tuations, GROS r This is especia ted data, BTVs a Minimun Maximun SE k hat (MLE Theta hat (MLE of Significance (β Value (125.28, α (use when n>=50 Estimates of Ga Mean (KM Variance (KM nu hat (KM	Statistics u tt has > 509 mall such a nethod may anethod may anetho	sing Imput 6 NDs with s <1.0, esp yield incor en the samp y be comp y be comp 95 meters usi	ed Non-De many tied pecially whe rect values ple size is s puted using Adjust	tects observation of UCLs a small. gamma dis gamma dis k star Theta star nt ed Chi Squ Adjusted t imates	ns at multiple DLs ple size is small (e.g., nd BTVs stribution on KM estim Mean Median CV (bias corrected MLE) (bias corrected KM) (bias	<15-20) ates 0.252 0.01 2.268 0.344 0.733 125.3 100.3 125.3 100.3 0.315 0.568 0.0424 0.207 75.43 1.247 0.782 2.791

	٨	_		0	_	1	-	_	0	I					_	
504	A	Approviu	moto		D Uara Valu	0 (75)	E 42 ~)	F 56.42	G	H	united (l hi Cr	J J	K	2)	L
521		Approxi	inale			e (75.4	+3, u)	0.042		Auj	usieu C			= (75.45, μ	<u>"</u>	0.29
522	5% Gamm	a Approxi	imate		JL (use w	nen n-	>=50)	0.345	95% (amma A	ajustea	NIVI-	UCL (use v	vnen n <su< th=""><th>り</th><th>0.340</th></su<>	り	0.340
523																
524	-				Logr	orma	GOF	Test on D	etected O	bservatio	ons Onl	y				
525		Shapir	ro Will	k Appr	oximate T	est Sta	atistic	0.945			Shapi	ro Wi	lk GOF Te	est		
526				5%	Shapiro V	Vilk P	Value	0.00801	Deteo	cted Data	Not Lo	gnori	mal at 5% S	Significanc	e Lev	vel
527				L	_illiefors T	est Sta	atistic	0.0842			Lillie	efors	GOF Test			
528				5% L	illiefors C.	ritical `	Value	0.106	Detect	ed Data a	ippear l	ogno	ormal at 5%	Significal	nce L	_evel
529				Dete	ected Data	a appe	ar Ap	proximate	Lognorma	al at 5% S	Significa	ance	Level			
530							-	-	-		-					
531					Loan	ormal	ROS	Statistics I	Jsina Imp	uted Non	-Detect	s				
532				N	lean in Or	iginal	Scale	0 253	0 F				Mean ir	l l og Scal	e -	-3 786
532						ininal	Scale	0.572					SD ir			2 524
533	QF		(2661)	mes n	ormality of	ROS	data)	0.072			95%	6 Por	centile Boo	tetran LIC	<u> </u>	0.33
534	50	7/0 T OOL	(นววน	05%		tetran		0.325			507		05% Boot	ctrop t UC		0.00
535				90 /0				1 1 2 6					95 /0 DOUL	siapioc	<u> </u>	0.335
536				90	0% H-UCL	(LOG	RUS)	1.120								
537																
538			Stat	istics u	Ising KM	estima	tes o	n Logged [Data and A	Assuming	Logno	rmal	Distributio	<u>n</u>		
539					KM Me	an (lo	gged)	-2.896					KM	Geo Mea	n	0.0552
540					KMS	SD (lo	gged)	1.555			95%	6 Crit	ical H Valu	e (KM-Log	J)	2.71
541		KM	l Stan	dard E	rror of Me	an (lo	gged)	0.116				ç	95% H-UCL	_ (KM -Log	J)	0.253
542					KMS	SD (lo	gged)	1.555			95%	6 Crit	ical H Valu	e (KM-Log	J)	2.71
543		KM	l Stan	dard E	rror of Me	an (lo	gged)	0.116								
544																
545								DL/2 St	atistics							
5/6				DL/2	Normal						DL/2	log-]	Fransforme	ed		
540				M	lean in Or	ininal	Scale	0 252			002	209	Mean ir			3 3 2 3
547				IV		iginal	Seele	0.202								1 0 1 0
548			050/					0.372					3D II			0.202
549			95%	TUCL	(Assume	s norm	ianty)	0.322					95%			0.302
550			DL/2	is not	a recomr	nende	d met	nod, provid	led for col	mparison	s and n	istor	ical reasor	IS		
551																
552					N	onpar	ameti	ric Distribut	tion Free l	JCL Stati	istics					
553			De	etected	l Data app	bear A	pprox	imate Garr	nma Distril	buted at \$	5% Sigi	nifica	nce Level			
554																
555							5	Suggested	UCL to Us	se						
556		95	5% KN	Appro	oximate G	amma	UCL	0.345								
557																
558		Wł	hen a	data s	et follows	an ap	proxin	nate (e.g., r	ormal) dis	stribution	passing	, one	of the GOF	- test		
559	When	applicable	e, it is	sugge	sted to us	e a UC	L bas	ed upon a	distributio	n (e.g., ga	amma)	passi	ng both GC	OF tests in	Prol	JCL
560											, ,		-			
561	Note: Su	aestions	regar	dina th	e selectio	n of a	95% I	JCL are pro	ovided to h	nelp the u	ser to s	elect	the most a	ppropriate	95%	6 UCL.
562			<u> </u>	Recon	mendatio	ns are	base	d upon dat	a size, dat	a distribu	tion. an	d ske	wness.			
563	These re	ecommen	datior	ns are l	based upo	on the	result	s of the sim	ulation stu	idies sum	marize	d in S	Singh, Maic	hle, and L	ee (2	2006).
564	However s	imulations	s resu	lts will	not cover	all Re	al Wo	rld data set	s for addi	tional insi	iaht the	user	may want	to consult	a sta	atisticia
504	10110101, 0	intelection	51050						3, 101 dddi		igni uic	0001	may want		<u>u 51u</u>	
505	Nanh															
500	марн															
567								0	04-4-4-							
568			-					General	Statistics		NI 1		D: .:			00
569			10	tal Nul	mber of O	bserva	ations	182			Nume	per of	Distinct OI	oservation	s .	20
570					Numbe	r of De	etects	36				N	umber of N	on-Detect	s 1	46
571				Numb	er of Dist	nct De	etects	20			Num	ber o	f Distinct N	on-Detect	S	1
572					Minir	num D)etect	0.01					Minimum	Non-Detec	t	0.01
573					Maxir	num D)etect	0.271					Maximum	Non-Detec	t	0.01
574					Varia	nce De	etects	0.00182					Percent N	on-Detect	S	80.22%
575					Me	ean De	etects	0.0317						SD Detect	s	0.0427
576					Med	ian De	etects	0.021						CV Detect	s	1.346
577					Skewn	ess De	etects	5.307					Kurto	sis Detect	s	30.2
5.7				Ме	anoflog	ged De	etects	-3.726					SD of Load	ed Detect	s	0.608
5/X													38			
578 570																
578 579						N	lorma	GOF Tee	t on Deter	ts Only						
578 579 580				Shar		N 051 94	lorma		t on Detec	ts Only	Shari	ro W				
578 579 580 581			Ę0/	Shap		N est Sta	lorma atistic	I GOF Tes 0.393	t on Detec	ected Do	Shapi	ro Wi	Ik GOF Te	st		
578 579 580 581 582			5%	Shap 6 Shap	iro Wilk T iro Wilk C	N est Sta ritical V	lorma atistic Value	I GOF Tes 0.393 0.935	t on Detec	ected Da	Shapi ta Not N	ro Wi	ilk GOF Te al at 5% Si	ist gnificance	Leve	əl
578 579 580 581 582 583			5%	Shap 6 Shap 1	iro Wilk T iro Wilk C _illiefors T	N est Sta ritical ` est Sta	lorma atistic Value atistic	I GOF Tes 0.393 0.935 0.313	t on Detec	cts Only	Shapi ta Not N Lillio	ro Wi Norma efors	Ik GOF Te al at 5% Si GOF Test	est gnificance	Leve	əl
578 579 580 581 582 583 583 584			5%	Shap 6 Shap 1 5% L	iro Wilk T iro Wilk C illiefors T	N est Sta ritical est Sta ritical	lorma atistic Value atistic Value	I GOF Tes 0.393 0.935 0.313 0.145	t on Detec Det	ected Da	Shapi ta Not M Lillio ta Not M	ro Wi Norma efors	Ik GOF Te al at 5% Si GOF Test al at 5% Si	ist gnificance gnificance	Leve	el el

	۸	D	1	<u> </u>	T		E	E	C	ш	· ·	<u> </u>	L L	
500	A	D		C		U	E	Г	G	п		J	N	L
200			(onlo	n Moio	- ////	I) Stat	lation uning	Normal C		on and at	or Nonno	romotrio LIC		
587		r	\apia	n-meie	r (rv	i) Stat			ritical valu	les and otr	ier Nonpal		LS	0.0045
588							KM Mean	0.0143			KM S	tandard Erro	or of Mean	0.0015
589							KM SD	0.0206				95% KM (BCA) UCL	0.0176
590						95% k	KM (t) UCL	0.0169		95%	6 KM (Perc	entile Boots	strap) UCL	0.0171
591					9	95% K	M (z) UCL	0.0168			959	% KM Boots	trap t UCL	0.0204
502				90%	KM	Cheby	/shev UCI	0 0189			95%	6 KM Cheby	, shev UCI	0 0211
502				97.5%	KM	Cheby		0.024			909	KM Cheby	shev UCI	0.0297
593				57.57		Cheby		0.024			557		SHEV UCL	0.0237
594											<u> </u>	-		-
595						Gam	ma GOF I	ests on De	etected Ob	servations	Only			
596					A	A-D Te	st Statistic	2.62		An	derson-Da	rling GOF 1	rest	
597					5% A	-D Cri	tical Value	0.76	Detected	Data Not G	amma Dis	tributed at 5	5% Significa	ance Level
598					ŀ	<-S Te	st Statistic	0.19		Ko	olmogorov	Smirnov G	OF	
599					5% K	K-S Cri	itical Value	0.149	Detected	Data Not G	amma Dis	tributed at 5	5% Significa	ance Level
600					Dete	cted D	ata Not G	amma Dist	ributed at !	5% Sianifia	cance Leve	əl		
601														
602							Gamma S	tatistics or	Detected	Data Only	,			
002						k	bot (MLE)	1 069	Delected		k ata	/hing oprro	atad MLE)	1 0 0 0
603						к <u>т</u> і і		1.900			K Slai			1.022
604						Ineta	nat (MLE)	0.0161			I heta stai	(bias corre	cted MLE)	0.0174
605						nu	hat (MLE)	141.7			n	u star (bias	corrected)	131.2
606						Mear	n (detects)	0.0317						
607														
608						Gam	ima ROS S	Statistics u	sing Impute	ed Non-De	tects			-
609		GRC	OS m	ay not l	be us	ed wh	en data set	t has > 50%	NDs with	many tied	observatio	ns at multip	le DLs	
610	GROS	may not b	be us	ed whe	n kst	ar of d	etects is sr	nall such a	s <1.0, esp	ecially whe	en the sam	ple size is s	mall (e.g.,	<15-20)
611				For suc	h situ	ations	. GROS m	ethod mav	vield incor	rect values	of UCLs a	nd BTVs		,
612						This	is especial	llv true whe	n the same	nle size is e	mall			
012	For	aommo a	dictrik	outod de	atacta	nino od dote			w ho comp		aommo di		- KM octim	atoc
013	10	yannina t	uistiit				A, DIVS di			uteu using	yannina ui		Moon	
614							Massimum	0.01					Madian	0.0143
615							waximum	0.271					wedian	0.01
616							SD	0.0207					CV	1.447
617						k	hat (MLE)	2.88			k star	(bias corre	cted MLE)	2.837
618						Theta	hat (MLE)	0.00496			Theta star	· (bias corre	cted MLE)	0.00504
619						nu	hat (MLE)	1048			n	u star (bias	corrected)	1032
620			Adju	sted Le	vel o	f Signi	ficance (β)	0.0487						
621		Appro	oxima	te Chi	Squa	re Valu	ue (N/A, α)	958.9		Ad	usted Chi	Square Valu	ue (N/A, β)	958.3
622	95% G	amma Ap	proxi	mate U	CL (u	ise wh	en n>=50)	0.0154	95	% Gamma	Adjusted	UCL (use w	/hen n<50)	0.0154
623		•					,						,	
624						Estim	ates of Ga	mma Para	meters usi	na KM Est	imates			
625							Mean (KM)	0.0143					SD (KM)	0.0206
025						Vari	ance (KM)	4 2547E-4				SE of M	Vean (KM)	0.0200
626						van		4.23476-4						0.0013
627								0.48				ĸ		0.476
628						n	u nat (KM)	174.9				nı	i star (KM)	1/3.3
629						thet	a hat (KM)	0.0298				theta	a star (KM)	0.03
630				80% ga	amma	a perce	entile (KM)	0.0234			90% g	amma perce	entile (KM)	0.0391
631				95% ga	amma	a perce	entile (KM)	0.0559			99% g	amma perce	entile (KM)	0.0974
632														
633							Gamma	Kaplan-M	eier (KM) S	Statistics				
634		Approxin	nate	Chi Sai	iare \	/alue ((173.32 α)	143.9		Adiust	ed Chi Sa	uare Value ((173 32 B)	143 7
625	5% Gamm		vimate	- KM-11		ise wh	(n n = 50)	0.0172	95% (Samma Adi	usted KM-		(hen n<50)	0.0172
626	o /o danin		annaa		01 (0			0.0172	0070 0	annina / taj		002 (000 11	non n oc)	0.0172
030						Logn		Test on D	atastad Ol		o Only			
637				0						USEIVALION	S Offiy			
638				Shap	oiro v		st Statistic	0.866			snapiro w	IK GOF Tes	St	
639			5	% Shap	Diro V	/ilk Cri	tical Value	0.935	Detec	ted Data N	lot Lognori	nal at 5% S	ignificance	Level
640					Lillief	ors Te	st Statistic	0.145			Lilliefors	GOF Test		
641				5% I	Lilliefo	ors Cri	tical Value	0.145	Detecte	ed Data ap	pear Logno	ormal at 5%	Significanc	e Level
642				Dete	ected	Data	appear Ap	proximate	Lognorma	l at 5% Sig	nificance	Level		
643														
644						Logno	rmal ROS	Statistics	Jsing Impu	uted Non-E	Detects			
645				Ν	/lean	in Oric	ainal Scale	0.00909				Mean in	Log Scale	-5.604
616					SD	in Oric	ninal Scale	0 022				SD in		1 33
040	0	5% + 1101	(200	umec n	ormo	lity of l		0.022			95% Dor		Log Ocale	0.0110
047	9	570 L UCL	(055					0.0110			35 /0 Pel			0.0119
648				95%	% BC/		Istrap UCL	0.0141				90% BOOts	urap t UCL	0.014/
649				95	5% Н	-UCL ((Log ROS)	0.0114						
650														

		-	_							-	ī	7		
	A	В	C		D	<u> </u>	E	F	G	Н	<u> </u>	J	K	L
651			Statistic	cs u	sing KM	estim	nates o	n Logged I	Data and A	ssuming l	ognormal	Distributio	1	
652					KM Me	an (le	ogged)	-4.431				KM	Geo Mean	0.0119
653					KMS	SD (le	ogged)	0.44			95% Criti	cal H Value	ə (KM-Log)	1.783
654		K١	I Standar	dE	rror of Me	an (lo	ogged)	0.0331			9	5% H-UCL	(KM -Log)	0.0139
655					KMS	SD (le	ogged)	0.44			95% Criti	ical H Value	e (KM-Log)	1.783
656		K١	I Standar	dE	rror of Me	an (le	ogged)	0.0331						
657														1
658								DL/2 S	tatistics					
659			DL	/2 N	lormal						DL/2 Log-1	ransforme	d	
660				M	ean in Or	inina	l Scale	0.0103			001 L0g .	Mean in		-4 987
000						igina		0.0100						0.683
661			050/ +11			iyina		0.0210						0.005
662			95% t U		(Assume	s nor	mality)	0.0129		•		95% 1	1-Stat UCL	0.0095
663			DL/2 IS I	not	a recomr	nena	ed met	noa, provi	ded for col	mparisons	and histori	cal reason	s	
664														
665					N	lonpa	arametr	ic Distribu	tion Free l	JCL Statis	tics			
666			Detecte	ed [Data appe	ear A	pproxir	nate Logn	ormal Dist	ributed at !	5% Signific	ance Leve	1	
667														
668							S	Suggested	UCL to Us	e e				
669						KM	H-UCL	0.0139						
670														
671	Note: Su	aaestions	regarding	a th	e selectio	n of a	a 95% l	JCL are pr	ovided to h	elp the us	er to select	the most a	ppropriate 9	95% UCL.
672		33	Re	com	mendatio	ns a	re hase	d unon dat	a size dat	a distributi	on and ske	wness		
072	Those r	ocommor	dations a	uro k		n the		of the cirr	ulation ctu	dios sum	on, and ske	ingh Maio	blo and Lo	o (2006)
073	lawayar											may want		
674	nowever, s	simulation	s results	wiii	not cover	all R	earwo	nu uata se	is, for addi	uonai insig	nt the user	may want	o consult a	statisticial
675														
676	Phen													
677														
678								General	Statistics					
679			Total	Nur	nber of O	bserv	/ations	182			Number of	Distinct Ob	servations	45
680					Numbe	r of D	Detects	48			N	umber of N	on-Detects	134
681			Nu	ımb	er of Dist	inct D	Detects	43			Number o	f Distinct N	on-Detects	3
682					Minir	num	Detect	0.021				Minimum I	Von-Detect	0.02
683					Maxir	num	Detect	0.864				Maximum I	Von-Detect	0.036
684					Varia	nce F)etects	0.021				Percent N	on-Detects	73 63%
605					M	aan F		0.021				1 01001111		0 145
000					Mod	lion C		0.111					2V Detects	1 21
686					Channe			0.000				Kunta	JV Delecia	15.41
687					Skewn	ess L		3.508						15.41
688				wea	an of Log	gea L	Detects	-2.654				SD of Logg	ed Detects	0.866
689														
690							Norma	I GOF Tes	t on Detec	ts Only				
691			S	hap	iro Wilk T	est S	tatistic	0.6			Shapiro Wi	lk GOF Te	st	
692			5% Sł	napi	iro Wilk C	ritica	l Value	0.947	Det	ected Data	a Not Norma	al at 5% Sig	gnificance L	evel
693				L	illiefors T	est S	tatistic	0.27			Lilliefors	GOF Test		
694			5	% L	illiefors C	ritica	l Value	0.127	Det	ected Data	a Not Norma	al at 5% Sig	gnificance L	evel
695					Det	ected	d Data	Not Norma	al at 5% Si	gnificance	Level			
696														
697		k	Kaplan-Me	eier	(KM) Sta	tistic	s usinc	Normal C	ritical Valu	ues and ot	her Nonpar	ametric U	CLs	
608		-			()	KN	l Mean	0 0439			KM S	andard Fr	or of Mean	0 0062
600								0.0837				95% KM		0.0538
700					05%			0.0007		050	KM (Pore		stran) UCL	0.0000
700					95%			0.0543		907				0.0049
/01				00/	95%			0.0542			957			0.0607
702			9	0%	KM Chet	byshe	ev UCL	0.0627			95%	KM Cheb	yshev UCL	0.0712
703			97.	5%	KM Chet	byshe	ev UCL	0.0831			99%	KM Cheb	yshev UCL	0.106
704														
705					Gar	nma	GOF T	ests on De	etected Ob	servations	s Only			
706				-	A-D T	est S	tatistic	2.576		An	derson-Da	rling GOF	Test	
707				5	5% A-D C	ritica	l Value	0.773	Detected	Data Not C	Gamma Dis	tributed at	5% Significa	ance Leve
708					K-S T	est S	tatistic	0.191		K	olmogorov-	Smirnov G	OF	
700				Ę	5% K-S C	ritica	l Value	0.131	Detected	Data Not (Gamma Dis	tributed at	5% Sianific	ance Level
710				1	Detected	Data	Not G	amma Dist	ributed at	5% Signifi	cance I eve			
711						_ uu				e ve elignin				
710						60	mme	tatietico or		Data Onh	,			
712						dd Ard V	(MI E)		Delecied		l k atau	(hice corre		1 100
/13						r nat		1.247			K Star			1.183
/14					Inet	a nat		0.0886			i neta star	(Dias corre	cted IVILE)	0.0934
715					n	u hat	(MLE)	119.7	1		n	u star (bias	corrected)	113.6

	A	В		С	D	E	F	G	Н			J		K	L
716					Me	an (detects)	0.111								
717															
718		0.00			Ga	mma ROS S	Statistics u	sing Impu	ted Non-L)etects			1.2 1	<u> </u>	
719		GRC)S m	ay not l	be used w	hen data se	t has > 50%	6 NDs with	many tie	d obser	rvatic	ns at mu	iltiple	DLs	(= 00)
720	GROSI	may not t	be us	ed whe	n kstar of	detects is si	nall such a	s <1.0, es	pecially w	hen the	e sam	ple size	is sn	nall (e.g.,	<15-20)
721				For suc	h situatior	is, GROS m	ethod may	yield incol	rrect value	es of U	ULS a	and BIV	S		
722	Far		انسفونا	منغمط طر	I NI	s is especia	lly true whe	en the sam	pie size is	s small.		atributia		KM aatim	
723	FOI	gamma c	listri	bulea ae	elected da	Minimum		ay be comp	Julea usin	g gami	na u	SINDULIO	n on	Kivi esum	
724						Maximum	0.01							Median	0.0300
725							0.004								2 350
720						k hat (MLE)	0.0002				k eta	(hias co	orree		0.756
727					Thet	a hat (MLE)	0.703			Thet	n sia a sta		orrec		0.750
720					n	u hat (MLE)	278.4			mea	n	u star (h	ias c	orrected)	275.2
729			Adiu	isted Le	vel of Siar	nificance (B)	0.0487								270.2
731		Approxim	nate	Chi Sau	are Value	(275.16. α)	237.7		Adiu	sted Cł	ni Sa	Jare Val	ue (2	75.16. B)	237.5
732	95% Ga	imma Api	prox	imate U	CL (use w	hen n > = 50)	0.0423	9	5% Gamm	na Adiu	sted	UCL (us	e wh	en n<50)	0.0423
733					(
734					Estir	nates of Ga	mma Para	meters us	ing KM E	stimate	s				
735						Mean (KM)	0.0439		•					SD (KM)	0.0837
736					Va	riance (KM)	0.00701	1				SE	of M	ean (KM)	0.0062
737						k hat (KM)	0.275						k	star (KM)	0.274
738						nu hat (KM)	99.98						nu	star (KM)	99.67
739					the	eta hat (KM)	0.16					tł	neta	star (KM)	0.16
740				80% ga	amma per	centile (KM)	0.0656			90	0% g	amma p	ercer	ntile (KM)	0.131
741				95% ga	amma per	centile (KM)	0.207			99	9% g	amma p	ercer	ntile (KM)	0.406
742								•							
743						Gamma	Kaplan-M	eier (KM)	Statistics						
744		Approxi	imate	e Chi Sc	quare Valu	e (99.67, α)	77.64		Adj	usted C	Chi S	quare Va	ilue (99.67, β)	77.48
745	5% Gamm	a Approx	imat	e KM-U	CL (use w	hen n>=50)	0.0563	95% (Gamma A	djusted	I KM-	UCL (us	e wh	en n<50)	0.0564
746															
747				0		normal GOF	Test on D	etected O	bservatio	ns Only	y				
748				Snap		est Statistic	0.922	Data		Snapi	ro vv				
749			5	% Snap		ritical value	0.947	Dete	cted Data	NOT LO	gnor	mai at 5	% SIQ	gnificance	Level
750				5%		ritical Value	0.134	Dete	cted Data	NotLo	anor	Mal at 50	551 % Sid	nificance	
751				5701	Deter	rted Data N	ot Lognorn	nal at 5% s	Significan		gnor el		/0 010	grinicarice	
752					2010		et Logitori		- grinean		•.				
754					Loan	ormal ROS	Statistics	Usina Imp	uted Non-	-Detect	ts				
755				Ν	lean in Or	iginal Scale	0.0336					Mear	n in L	og Scale	-4.916
756					SD in Or	iginal Scale	0.0872					S) in L	.og Scale	1.808
757	95	% t UCL	(ass	umes n	ormality o	f ROS data)	0.0443			95%	6 Per	centile E	Boots	trap UCL	0.0449
758				95%	6 BCA Bo	otstrap UCL	0.0483					95% Bo	otstr	ap t UCL	0.0514
759				95	5% H-UCL	(Log ROS)	0.0562								
760															•
761			Sta	atistics	using KM	estimates o	n Logged I	Data and A	Assuming	Logno	rmal	Distribu	tion		
762					KM Me	an (logged)	-3.58					ŀ	KM G	ieo Mean	0.0279
763					KM	SD (logged)	0.708			95%	6 Crit	ical H Va	alue ((KM-Log)	1.941
764		KN	1 Sta	ndard E	Error of Me	an (logged)	0.053				ę	95% H-U	CL (KM -Log)	0.0397
765					KM	SD (logged)	0.708			95%	6 Crit	ical H Va	alue ((KM-Log)	1.941
766		KN	1 Sta	ndard E	Error of Me	an (logged)	0.053								
767															
768							DL/2 S	tatistics		DI (0)		-			
769				DL/2	Normal		0.0000				Log-	I ransfor	med	0	4 0 0 7
770				Ν	viean in Or	iginal Scale	0.0366					Iviear	in L	og Scale	-4.08/
//1			050	0/ + LIOI		iginal Scale	0.0861					SL	יוח <u>ב</u> ארוי א	Stat LICI	0.968
1/2			90) יים			s normality)	0.0471	ded for an	moricon	o ood L	liet	icel read	/0 TI-	Stat UCL	0.0313
//3			טט	2 15 1101	arecom		nou, provi	ueu IOF CO	inparison	s and n	IISTOL	ical reas	ons		
//4					•	lonnaramet	ric Dietribu	tion Free	UCI Stati	stice					
775 776				De	nta do not	follow a Die	cernihle D	istribution	at 5% Sir	uuus Inifican	ICA L	evel			
770 777				00				.54.154001		, moai	L				
778						9	Suggested	UCL to L	se						
779				95%	KM (Cheh	vshev) UCI	0.0712								
780					(1.00	,,		1							1

-												
	Α	В	С	D	ш	F	G	Н		J	K	L
781	Note: Sug	ggestions r	egarding th	e selection	of a 95%	UCL are pr	ovided to h	elp the use	r to select	the most ap	opropriate 9	95% UCL.
782			Recon	nmendatior	ns are base	ed upon dat	a size, data	a distributio	on, and ske	wness.		
783	These re	ecommend	ations are	based upor	n the result	s of the sin	nulation stu	dies summ	arized in S	ingh, Maich	nle, and Lee	e (2006).
784	lowever, s	imulations	results will	not cover a	all Real Wo	orld data se	ts; for addit	ional insigh	nt the user	may want t	o consult a	statisticiar
785												

	٨	P			Е		G			1 1		
1	A	D	U		ICL Statisti	cs for Unc	ensored F	ull Data	Sets	J	ĸ	<u> </u>
2									0010			
2			tod Options									
3	Dete/T			Drol ICL 5	16/05/001	0 1.20.22 F						
4	Date/1		From File		2016 2017		IVI					
5		E.J.			2010_2017							
6		Full	Precision									
/	C0	nildence C	voemcient	95%								
8		oolstrap O	perations	2000								
9												
10	0											
11	Cu											
12						Conorol	Statistics					
13			Tatal Nu	mbor of Ol			Statistics		Number of			150
14			TOLATINU		JSEIVALIONS	193			Number of	Missing Ok	Servations	152
15					Minimum	6.0			Number of		Moon	10 02
16					Maximum	0.9					Median	40.02
17					Maximum	239				Std En	wealan	20.0
18				Coefficient	of Variation	45.09				SIU. EII	Skownooo	3.209
19			(0.930					Skewness	1.327
20						Normal						
21			Shou	airo Mille Te	oot Statiatia				Shanira W			
22			Shap			0.0		Data M	Snapiro w		St	
23			5%			0.016		Data No				
24			E 0/ 1			0.210		Data N		GUF Test		
25			3%1		Dete Net N	0.0042	0/ Signifi			5% Signine		
26					Data Not r	Normai at a	o% Signino	cance Le	vei			
27					A a a	uming Nor	mal Diatrik	ution				
28			059/ NL		ASS	uming Nor				inted for Cl	(oursee)	
29			90% NG		ont'o t LICI	E4 26		907			Cewness)	54 57
30				95% 5100	ents-tUCL	34.20		95	% Aujusteu-		-nen-1995)	54.57
31			-	-				90	5% Woulleu-		15011-1970)	04.51
32			-	-		Gamma					-	-
33					et Statistic	6 5 1 8		Ando	reon-Darling	. Gamma G		
25					itical Value	0.310	Data	Not Gan	nma Distribu	ted at 5% S	Significance	
30				570 A-D CI	est Statistic	0.775	Date	Kolmor	nina Distribu	ov Gamma	GOF Test	
27				5% K-S Cr	itical Value	0.0669	Data	Not Gan	nma Distribu	ted at 5% S	Significance	
37				Data	Not Gamm	a Distribut	ed at 5% S	Significan	re i evel		ngrimeanee	
30												
40						Gamma	Statistics					
40					(hat (MLE)	1.355			k sta	r (bias corre	ected MLE)	1.338
42				Theta	a hat (MLE)	36.03			Theta sta	r (bias corre	ected MLE)	36.5
43				nı	hat (MLE)	523.1			n	u star (bias	corrected)	516.3
40			MLE	Mean (bias	corrected)	48.82			М	LE Sd (bias	corrected)	42.22
45					,			Ap	proximate Cl	hi Square V	, alue (0.05)/	464.6
46			Adjusted	Level of S	Significance	0.0488			Adjus	sted Chi Sq	uare Value	464.2
47					-						I	
48					Assı	uming Gan	nma Distri	bution				
49	95% Ap	proximate	Gamma UC	CL (use wh	en n>=50))	54.26	9	5% Adjus	ted Gamma	UCL (use v	vhen n<50)	54.3
50											I	
51						Lognorma	I GOF Tes	st				
52			Shap	oiro Wilk Te	est Statistic	0.918		Sha	piro Wilk Log	gnormal GO	OF Test	
53			5%	Shapiro W	/ilk P Value	1.221E-15	5	Data Not	Lognormal a	at 5% Signif	ficance Leve	el
54				Lilliefors Te	est Statistic	0.102		Li	lliefors Logn	ormal GOF	Test	
55			5% I	_illiefors Cr	itical Value	0.0642		Data Not	Lognormal a	at 5% Signif	ficance Leve	ગ
56					Data Not Lo	gnormal a	t 5% Signi	ficance L	.evel			
57												
58						Lognorma	al Statistic	S				
59			Min	imum of Lo	ogged Data	1.932				Mean of lo	ogged Data	3.476
60			Max	imum of Lo	ogged Data	5.476				SD of lo	ogged Data	0.909
61						•					I	
-				-		ning Logn	ormal Dist	ribution				
62					Assur			ibulion				
62 63				9	Assur 5% H-UCL	56.06			90% Ch	ebyshev (N	IVUE) UCL	59.97
62 63 64			95% Che	9 ∌byshev (N	Assur 5% H-UCL IVUE) UCL	56.06 65.07			90% Ch 97.5% Ch	ebyshev (N ebyshev (N	IVUE) UCL IVUE) UCL	59.97 72.15

	A	В	С	D	E	F	G	Н		J	K	L
66												
67				No	onparamet	ric Distribu	tion Free L	JCL Statist	tics			
68				Dat	a do not fo	llow a Disc	ernible Dis	stribution (C).05)			
69												
70					Nonpara	metric Dis	tribution Fr	ree UCLs				
71				95%	D CLT UCL	54.23				95% Jac	kknife UCL	54.26
72			95% Sta	ndard Boo	tstrap UCL	54.27				95% Boots	strap-t UCL	54.76
73			95%	Hall's Boo	tstrap UCL	54.58			95% Per	centile Boo	otstrap UCL	54.49
74			95%	6 BCA Boo	tstrap UCL	54.5						
75		!	90% Cheby	/shev(Mear	n, Sd) UCL	58.69		9	95% Cheby	yshev(Mea	n, Sd) UCL	63.16
76		97	1.5% Cheby	shev(Mear	n, Sd) UCL	69.36		9	99% Cheby	yshev(Mea	n, Sd) UCL	81.54
77												
78					5	Suggested	UCL to Us	e				
79		ę	5% Cheby	shev (Mear	n, Sd) UCL	63.16						
80												
81	Note: Su	ggestions r	regarding th	ne selectior	i of a 95% I	UCL are pr	ovided to h	elp the use	er to select	the most a	ppropriate 9	95% UCL.
82			Recon	nmendatior	ns are base	ed upon dat	a size, data	a distributio	on, and ske	wness.		
83	These r	ecommenc	lations are	based upor	n the result	s of the sim	ulation stu	dies summ	narized in S	Singh, Maic	hle, and Lee	e (2006).
84	lowever, s	simulations	results will	not cover a	all Real Wo	orld data set	ts; for addit	tional insigh	nt the user	may want	to consult a	statisticiar
85												

APPENDIX F

Toxicity Assessment

The following discussion presents the toxicity of PAHs relative to human health, in accordance with risk assessment guidelines from British Columbia.

D.1 Evaluation of COPC Carcinogenicity

Health Canada, the USEPA, and the International Agency for Research on Cancer (IARC) categorize chemicals as to their carcinogenicity. For each parameter, the regulatory agencies evaluate evidence from human and animal studies, and classify the data in terms of whether the information is adequate to suggest that a chemical is a carcinogen or not. The classifications typically consider whether information is sufficient to classify a substance as a carcinogen, or if there is limited, inadequate, or no data, or if there is evidence of non-carcinogenicity. As new research becomes available, the USEPA, IARC, and Health Canada then adjust their provisional classification based on the results of new studies or other supporting evidence of carcinogenicity. The USEPA, IARC, and Health Canada classification systems based on a weight of evidence are shown in the below table.

Health Canada	IARC	USEPA	Description
I	1	A	Human carcinogen
II	2A	B B1 B2	Probable human carcinogen Limited human evidence available Inadequate human evidence; sufficient animal evidence
III	2B	С	Possible human carcinogen
IV	3	D	Not classifiable as to human carcinogenicity
V	4	E	Evidence of non-carcinogenicity for humans

Table D-1: Weight o	of Evidence	Classification S	System for	Carcinogenicity

Under this paradigm, it is assumed that if a chemical is known or suspected to be a carcinogen in humans or laboratory animals (Health Canada Group I or II), the chemical has the potential to cause cancer at any level of exposure. This is referred to as a non-threshold effect. For chemicals with non-carcinogenic effects (Health Canada Group III, IV, and V), there is a threshold below which no adverse impacts are expected. The below table summarizes the weight-of-evidence carcinogenic classifications for the selected COPCs.

COCs	Health Canada	IARC	USEPA
Benzo(a)pyrene	I	1	A- Carcinogenic
			to humans

Table D-2: Weight of Evidence Carcinogenic Classification for Human COPCs

The toxicities of all other carcinogenic PAHs are evaluated with respect to benzo(a)pyrene. All of the PAHs retained for the risk assessment are considered potential carcinogens.

D.2 Toxicity Benchmarks

A reference value for a chemical with carcinogenic effects is called a "slope factor" and represents an upper bound estimate of the slope between exposure and occurrence of effect (cancer). The slope factor represents a dose-response relationship, and when multiplied by the estimate exposure does, provides an upper bound estimate of the probability of developing cancer in a chronically exposed population. The slope factor for benzo(a)pyrene is available from Health Canada (2010) while all other PAHs are evaluated with respect to that toxicity. Total potency equivalents (TPE) (CCME 2010) are listed below for the other PAHs, and were used to develop the BaP TPE exposure concentration evaluated here.

СОРС	Oral Slope Factor (mg/kg- day) ⁻¹	Dermal Slope Factor (ug/cm²-day) ¹	Inhalation Slope Factor (mg/kg-day) ⁻¹	Total Potency Equivalents (CCME 2010)	Slope Factor Reference
Benzo(a)pyrene	2.3	3.5	0.137	1	HC 2010
Benzo(b)fluoranthene	0.23	0.35	0.0137	0.1	NA
Benzo(g,h,i)perylene	0.023	0.035	0.00137	0.01	NA
Benzo(k)fluoranthene	0.23	035	0.0137	0.1	NA
Indeno(1,2,3- c,d)pyrene	0.23	0.35	0.0137	0.1	NA

Table 4-8. Benzo(a)Pyrene Total Potency Equivalents Evaluation

REFERENCES:

- Canadian Council of Ministers of the Environment (CCME), 2010. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Polycyclic Aromatic Hydrocarbons.
- Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada Part II: Health Canada Toxicological Reference Values (TRVs);

APPENDIX F LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

1.17 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

Report to Council

Date:	April 24, 2023 KEIOW
То:	Council
From:	City Manager
Subject:	MOU Agreements 2/3 – Water and Wastewater Servicing to OKIB I.R.#7 Lands
Department:	Infrastructure

Recommendation:

THAT Council receives for information the report from the Infrastructure General Manager dated April 24, 2023, regarding the Water and Wastewater Servicing Agreement to OKIB I.R.#7;

AND THAT the Mayor and City Clerk be authorized to execute the Water and Wastewater Servicing Agreement to OKIB I.R.#7 on behalf of the City of Kelowna.

Purpose:

To execute an agreement where Kelowna provides water and wastewater servicing to Okanagan Indian Band lands on Indian Reserve No. 7.

Background:

In 2020, City of Kelowna staff entered negotiations with the District of Lake Country (DLC) and Okanagan Indian Band (OKIB) staff to craft agreements on mutually shared services and projects that would benefit each community. This work culminated in the Memorandum of Understanding (MOU) between the parties which was signed in February 2022.

Over the past year, the negotiation of several legal agreements has been conducted between the three partners and the Government of Canada. The parties are actively finalizing six separate legal agreements for the following subjects:

MOU Ref #	Agreement Description	Status
1	Water supply agreement between Kelowna and Lake	Complete
	Country	
2&3	Water and Wastewater Servicing Agreement between	Subject of this report
	Kelowna and OKIB	
4a	Sewer permit agreement between Kelowna, OKIB and	Complete
	Canada	
4b	Rail Trail Access Permit between Kelowna and OKIB	Separate Concurrent
		Report
4C	Commonwealth Road permit between Kelowna, OKIB and	Under development
	Canada	
5	Sewer Agreement between Kelowna and Lake Country	Complete

Discussion:

The Water and Wastewater Servicing Agreement (MOU Reference #2 and 3) between Kelowna and OKIB is ready for execution and attached to this report.

Almost all properties on I.R.#7 are serviced by wells for water supply and septic fields for wastewater disposal. There are over 1,500 units of existing development and an estimated population of some 2,400 residents living on these properties. A couple of individual properties are serviced by Kelowna with water and wastewater connections under past individual agreements. The City has been advised that there are concerns with the quality of water provided by some of the wells as well as concerns with the large septic fields being in proximity of area lakes and creeks. This umbrella agreement provides the framework for water and wastewater service to any property with the reserve under the same conditions as provided to any similar property within the City's water and wastewater utility service areas.

As the OKIB is currently not self-governing nor have a utility service for this reserve, the City will look to enter into a separate agreement with each property owner who chooses to connect. The agreement allows the OKIB to take over administration of those services in the future should they become selfgoverning or set up a utility. The City will provide service to the property line where property owners become responsible for distribution and collection within their own properties and administer their onsite users. The City will require applicable development cost charges and water capacity growth charges to be paid for any redevelopment expansions in the future, but existing development will be exempt from those charges. New development will also contribute \$2,000 per equivalent dwelling unit to road improvements to Commonwealth and Beaver Lake Roads. The City will also require one or more fire hydrants (depending on individual locations) to be installed to improve fire protection on existing properties.

Service Area: The area to be serviced under this agreement is I.R. #7.

Term: Ongoing. Can be terminated by either party with 5 years notice. Can be terminated earlier for breach.

<u>Costs:</u> Kelowna pays \$10.00 to OKIB on the Commencement Date, the receipt and sufficiency of which are hereby acknowledged by the parties.
Conclusion:

The Water and Wastewater Servicing Agreement is one of a suite of agreements envisioned in the 2022 MOU between Kelowna, DLC and OKIB. The commitments, both financial and technical, are consistent with the broader goals of resolving the many issues being addressed by the MOU. The Water and Wastewater Servicing Agreement clarifies key terms and roles and limitations as envisioned in the MOU.

Internal Circulation:

Communications Financial Planning

Considerations applicable to this report:

Financial/Budgetary Considerations:

Any service connections or expansion of city infrastructure to service IR#7 will be funded by the applicable property owner(s). Rates and revenues for service will be on the same terms and conditions as other properties in the service area.

Communications Comments:

A formal signing ceremony will be held to jointly complete and celebrate several OKIB, DLC and Kelowna agreements.

Considerations not applicable to this report:

Legal/Statutory Authority: Legal/Statutory Procedural Requirements: Existing Policy: Financial/Budgetary Considerations: External Agency/Public Comments:

Submitted by: M. Logan, Infrastructure General Manager

Approved for inclusion: D. Gilchrist, City Manager

Attachment 1 – Water and Wastewater Servicing Agreement Attachment 2 - OKIB CoK Water and Wastewater Servicing Agreement Presentation

cc: Divisional Director, Corporate Strategic Services Acting Division Director, Financial Services

WATER AND WASTEWATER AGREEMENT

BETWEEN:

OKANAGAN INDIAN BAND

AND:

CITY OF KELOWNA

Duck Lake Indian Reserve No. 7

Dated for Reference: April 24, 2023

Copy _____ of _____

WATER AND SEWER SERVICES AGREEMENT

This Agreement, dated for reference ______ 2023, is made between:

OKANAGAN INDIAN BAND, a "band" within the meaning of the *Indian Act* having an office at 12420 Westside Road, Vernon, BC, V1H 2A4

("OKIB")

and:

CITY OF KELOWNA, a municipality under the laws of British Columbia having an office at 1435 Water Street, Kelowna, BC V1Y 1J4

("City")

BACKGROUND:

- A. OKIB has approved this Agreement by passing a Band Council Resolution at its meeting held on ______, 2023 in accordance with the provisions of the *Indian Act.* A copy of the Band Council Resolution is attached to this Agreement as Schedule A.
- B. The City Council has approved this Agreement.
- C. The City has constructed waterworks for the supply and distribution of domestic water and sewerage works for the provision of domestic water and the collection and treatment of sewer, to properties in and around the Reserve and the City.
- D. The Parties deem it to their mutual interest to enter into this Agreement to provide water and sewer services to properties on the Reserve that choose to connect.
- E. The Services provided or outlined within this Agreement are in the spirit of cooperation outlined in the Memorandum of Understanding made as of January 25, 2022, between the District of Lake Country, OKIB and the City.
- F. The intent of this agreement is to outline the principles and overarching terms and conditions required for individual properties in the Reserve to receive water and/or wastewater services from the City of Kelowna.

NOW THEREFORE, for mutual consideration, the Parties agree as follows:

1.0 **DEFINITIONS**

1.1 In this Agreement, including this section, the recitals and schedules hereto, unless the context otherwise requires:

"City Sewer System" means the City's system of sanitary sewer mains and sewage facilities located outside the Reserve.

"**City Water System**" means the City's system of water mains and pipes, pumps, and other facilities and equipment used to supply potable water located outside the Reserve excepting a historic water transmission main which is within a separate agreement and right of way.

"City Systems" means collectively, the City Sewer System and the City Water System.

"Commencement Date" means the date set out in section 2.1.

"CP Holder" means a Certificate of Possession holder within the Reserve in accordance with the provisions of the *Indian Act*.

"**CP Holder Service Agreement**" means an agreement between the City and a CP Holder for the supply of Services, substantially on the same terms as this Agreement.

"Indian Act" means the Indian Act, RSC 1985, c I-5.

"**Point of Connection**" means a point where the City Systems connect to the Reserve Systems.

"Property Owner" means

- (i) OKIB, in respect of Reserve land controlled by OKIB; and
- (ii) a CP Holder, in respect of a parcel of Reserve land controlled by that CP Holder.

"**Reserve**" means Duck Lake Indian Reserve No. 7, which has been set apart for the use and benefit of OKIB.

"**Reserve Sewer System**" means the system of OKIB owned or CP Holder owned sanitary sewer mains and laterals on the Reserve for the purpose of collection and conveying sanitary waste from the Reserve to the City System under a Service Agreement.

"**Reserve Systems**" means collectively, the Reserve Sewer System and the Reserve Water System.

"**Reserve Water System**" means the system of OKIB owned, or CP Holder owned water mains and lateral supply pipes on the Reserve for the provision of water services to the Reserve under a Service Agreement.

"**Services**" means the municipal services provided by the City that are described in section 4.1.

"Service Agreement" means an agreement for the supply of Services to Reserve property and includes this Agreement and a CP Holder Service Agreement.

"**Term**" means a period of time which this Agreement remains in force and effect, as described in section 2.

2.0 TERM

- 2.1 This Agreement commences on ______, 2023 and shall continue until termination under sections 2.2, 12.1 or 12.2 of this Agreement.
- 2.2 This Agreement may be terminated by either Party, at their sole discretion, upon five (5) years written notice.

3.0 GOVERNANCE AND ROLES

- 3.1 OKIB and the City acknowledge that the ability for the City to enforce compliance with a Service Agreement is limited on Reserve. OKIB acknowledges and supports that the City may need to terminate water or sewer services to a property if compliance with the Service Agreement by a Property Owner cannot be satisfactorily achieved.
- 3.2 Should OKIB wish to provide water and sewerage services for the Reserve in the future, the City and OKIB will terminate this Agreement with a goal of transferring all aspects of responsibility for CP Holder Service Agreements to OKIB.
- 3.3 The City will not enter the Reserve for the purpose of operation, maintenance or construction of any facilities on site other than any City infrastructure, including water meters, that may be located on Reserve. However, at the direct request of OKIB or a CP Holder, the City may enter the Reserve to provide servicing advice or assistance.
- 3.4 CP Holder Service Agreements will allow for the transfer of those Service Agreements to OKIB.
- 3.5 OKIB will not be a party to a CP Holder Service Agreement and is not responsible for enforcing any terms and conditions within CP Holder Service Agreements. For clarity, enforcement of CP Holder Service Agreements will rest with the City.

4.0 SERVICES

- 4.1 During the Term of this Agreement, the City will, at OKIB's request, provide one or both of the following services to OKIB for any properties in the Reserve:
 - (a) supply of potable water from City Water System to Reserve Water System; and

- (b) collection, conveyance, treatment and disposal of sanitary waste that is discharged from the Reserve Sewer System to the City Sewer System (the "Services").
- 4.2 The City will provide one or both of the Services to a CP Holder that chooses to enter into a CP Holder Service Agreement.
- 4.3 The costs, quality and quantity of the Services to be provided by the City under a Service Agreement will be substantially the same as the costs, quality and quantity of Services provided by the City to the users of such Services on non-Reserve lands within the City. The City is not obliged to provide Services at a greater level or degree than the level or degree to which the same Services are provided elsewhere within the City.
- 4.4 The City makes no representation or warranty that the level or degree of Services provided under a Service Agreement will be maintained or continued to any particular standard, other than as stated expressly herein.
- 4.5 OKIB acknowledges and agrees, and a CP Holder who chooses to connect to Services will acknowledge and agree, that there may be from time-to-time interruptions or reductions in the level of Services, and that the City will not be held liable for any losses, costs, damages, claims or expenses arising from or connected with a temporary interruption or reduction in the level of a Service provided under this Agreement or the Service Agreements.
- 4.6 As a condition of Service, OKIB agrees, subject to the terms of this Agreement, and a CP Holder will agree, subject to the terms of a CP Holder Service Agreement, to comply with the relevant and applicable sections of the following related City bylaws, as amended or replaced from time to time:
 - (i) Water Regulation Bylaw 10480, as amended,
 - (ii) Sewerage System User Bylaw 3480 as amended,
 - (iii) Sanitary Sewer / Storm Drain Regulation Bylaw 6618-90 as amended,
 - (iv) Well Regulation Bylaw 11770 as amended which outlines the requirements of managing on-site wells prior to obtaining a City water service.
- 4.7 As a condition of Service, and in a manner consistent with strata corporation developments in the City, OKIB or a CP Holder that wishes to connect to Services will retain a professional engineer registered and in good standing with the Engineers and Geoscientists British Columbia and maintaining professional liability and errors and omissions insurance (the "Professional Engineer") to design and to provide engineering services for the construction of a Reserve System, which Professional Engineer shall certify to the City that such works have been constructed to the appropriate standards and specifications. The Professional Engineer's certification must be delivered to the City, along with all of the Professional Engineer's inspection records and as-built drawings before any new Reserve System may be connected to the respective City System.
- 4.8 In the interests of improved fire protection on individual properties, any existing property connecting to water must install a minimum of one fire hydrant to the water system.

5.0 EXISTING SERVICE AGREEMENTS

- 5.1 The City and OKIB agree to work to transition the Sewer Effluent Servicing Agreement between the City and OKIB dated July 26, 2010 to a new Service Agreement.
- 5.2 The City and OKIB will use their best efforts to have water and sewer services that are currently provided to the Property Owner of 8850 Jim Bailey Road, legally described as Lot 5, Plan 59290 CLSR and Road, Plan 56035 CLSR, continue under a new CP Holder Service Agreement as soon as practicable upon the Commencement Date. For clarity, there will be no interruption in service, as service will continue under the Development Servicing Agreement dated September 16, 2020 between the City and the Property Owner until transferred and continued under a new CP Holder Service Agreement.

6.0 PAYMENT FOR SERVICES

- 6.1 OKIB agrees to, and CP Holders who choose to connect to Services will be required to, pay user fees for services that are consistent with similar properties outside of the Reserve on a frequency consistent with City bylaws.
- 6.2 OKIB acknowledges that no deduction from the established City fees shall be allowed on account of any rupture, leak, breakdown, or malfunction of the Reserve Systems or any plumbing on Reserve.
- 6.3 OKIB and CP Holders who choose to connect to Services will pay for purchasing and installation of the water and sewer meters to the City's satisfaction. The City will own the meters and is responsible for their maintenance and renewal.

7.0 CONSTRUCTION OF NEW RESERVE SYSTEMS

- 7.1 Each Reserve System, including any extension of a Reserve System and any replacement of a Reserve System made necessary by accidental loss, wear and tear, breakdown, malfunction or obsolescence, must be constructed at the sole cost of the relevant Property Owner and must meet good engineering standards.
- 7.2 A City representative shall be present for the final connection to the City System.
- 7.3 The City reserves the right to refuse a connection if the conditions of service cannot be met.

8.0 RESPONSIBILITY OF RESERVE SYSTEMS

- 8.1 A Property Owner shall at all times retain responsibility of the Reserve Systems on their property under this Agreement, and no interest, right or title to the Reserve Systems shall be conveyed to the City under this Agreement.
- 8.2 Except with the prior written consent of a Property Owner, the City will not utilize the Reserve Systems or establish any connection thereto, except for the purpose of providing Services under this Agreement.

- 8.3 The City will not construct, operate, maintain, remove or administer infrastructure on the Reserve, with the exception of the existing Water Transmission Main, shown highlighted in yellow on the map attached as Schedule C and any City owned water meters that may be located on Reserve.
- 8.4 The City will not be responsible for administration, operation, maintenance or renewal requirements for the Reserve Systems.

9.0 OPERATION, REPAIRS AND MAINTENANCE

- 9.1 The City will be responsible for all operation and maintenance of the City Systems up to the Point of Connection. The City will notify OKIB and affected CP Holders should any stoppages of service occur due to maintenance or short-term system failure.
- 9.2 OKIB or the CP Holder will promptly notify the City of any breakdown in a Reserve System on their property that requires any repair or maintenance work that may impact either City System.
- 9.3 OKIB and any CP Holder who chooses to connect to water will ensure that a backflow prevention program similar in outcome to the City's program is implemented on the Reserve.

10.0 FUTURE DEVELOPMENT AND COLLECTION OF DEVELOPMENT FEES

- 10.1 In accordance with the Memorandum of Understanding dated January 25, 2022, between the District of Lake Country, OKIB and the City, OKIB and the City shall develop policies and procedures with respect to future development on the Reserve to assure that appropriate growth charges are paid to the City for City Systems growth costs.
- 10.2 Subject to sections 10.3 and 10.4, OKIB and any CP Holder who chooses to connect to Services shall pay to the City, such fees and other charges payable in respect of the capital costs of providing, constructing, altering or expanding water and sewer facilities to service, directly or indirectly, new or expanded Reserve developments. Any required extension of or connection to the Services on City property or within a City highway or right of way will become the property of the City upon certification by the City of the completion of such works to the standards required under this Agreement.
- 10.3 The City will not apply any growth capacity charges for water, or development cost charges for water or wastewater for servicing the existing developments on Reserve. As of the date of execution of this Agreement, the existing developments consist of 1553 residential units with a population of 2,400 people on Reserve. Water and wastewater charges for additional development within an existing development will apply as they do for other City properties.
- 10.4 OKIB acknowledges that the figures in section 10.3, as they relate to existing developments within the Reserve, were determined by the process set out in the Water Demand Analysis Memorandum attached as Schedule B. OKIB agrees that this Memorandum will form the basis of determining the credit available for each

existing development when dealing with impact of additional growth on increased demands for water or wastewater in the future and calculating when charges are to be paid arising from a development.

10.5 Any new or expanded development on the Reserve that requires Services (as determined pursuant to section 10.4) must pay a levy to the City for roads in the amount of \$2,000.00 per single family equivalent units for improvements that will be used by the City solely for the capital improvements to Commonwealth and Beaver Lake Roads.

11.0 RIGHTS OF ACCESS

11.1 The City's officers, servants, agents or employees may at any time upon providing a Property Owner who has chosen to connect to Services with not less than the amount of notice that would be provided off the Reserve in similar circumstances, enter upon the Reserve for the purpose of providing any of the Services required in accordance with this Agreement and ensuring compliance with the terms of this Agreement.

12.0 TERMINATION FOR BREACH OF AGREEMENT

- 12.1 OKIB acknowledges that whether or not the Services are discontinued or any disconnections are made, where invoices remain unpaid after six (6) months, the City shall have the right, without prejudice to any other right or remedy, to terminate this Agreement, after giving OKIB six (6) months written notice.
- 12.2 Should either party be in breach of its covenants or undertakings other than a failure by OKIB to pay for Services, which remains un-rectified for a period of six (6) months (and which can be rectified within that time period) following written notification of such breach, the party not in breach may, at its option and without prejudice to any other rights or remedies it might have, terminate this Agreement after providing one (1) year's written notice to the party in breach.

13.0 LIABILITY

13.1 The City does not warrant or guarantee the continuance or quality of any of the services provided under this Agreement and shall not be liable for any damages, expenses, or losses occurring by reason of suspension or discontinuance of the Services for any reason which is beyond the reasonable control of the City, including without limitation acts of God, forces of nature, soil erosion, landslides, lightning, washouts, floods, storms, serious accidental damage, strikes or lockouts, vandalism, negligence in the design and supervision or construction of the Reserve Systems, or in the manufacture of any materials used therein, and other similar circumstances.

14.0 COMMUNICATIONS AND CONTACT PROTOCOL

14.1 All the Parties to this agreement will appoint one or more representatives, with notice to the other Parties of such appointments as the principal contacts for official communications about this Agreement, and as the principal contacts for operational matters pursuant to this Agreement. The Parties further agree to

establish a communications protocol to manage issues arising under this Agreement.

15.0 DISPUTE RESOLUTION

- 15.1 In the interest of cooperative and harmonious co-existence, the parties agree to use their best efforts to avoid conflict and to settle any disputes arising from or in relation to this Agreement. The Parties acknowledge and agree that this section 15.1 does not limit either Party's respective rights under section 12.1 or 12.2 above.
- 15.2 In the event that the parties fail to resolve matters, the parties shall seek a settlement of the conflict by utilizing the Joint Problem-Solving Method as described in the Federation of Canadian Municipalities (FCM) First Nations Municipal Community Infrastructure Partnership Program, and recourse to the Courts shall be a means of last resort, except when public health or safety is concerned.

16.0 ACKNOWLEDGEMENT OF RIGHTS

16.1 Nothing contained in this Agreement will be deemed to limit or affect any other Aboriginal rights or claims OKIB may have at law or in equity. Nothing contained in this Agreement will be deemed to limit or affect the legal rights, duties of obligations of the City. The Parties agree that nothing in this Agreement will affect the cooperation or consultation covenants the Parties have entered into pursuant to other Agreements.

17.0 HEADINGS

17.1 Headings that precede sections are provided for the convenience of the reader only and shall not be used in constructing or interpreting the terms of this Agreement.

18.0 ENTIRE AGREEMENT

- 18.1 This Agreement constitutes the entire Agreement between the Parties and there are no undertakings, representations or promises express or implied, other than those expressly set out in this Agreement.
- 18.2 This Agreement supersedes, merges, and cancels any and all pre-existing agreements and understandings in the course of negotiations between the Parties.

19.0 NOTICE

19.1 The address for delivery of any notice or other written communication required or permitted to be given in accordance with this Agreement, including any notice advising the other Party of any change of address, shall be as follows:

(a) to City:

City of Kelowna 1435 Water Street Kelowna, British Columbia, Canada V1Y 1J4

Attention: City Clerk

(b) to OKIB:

Okanagan Indian Band 12420 Westside Road, Vernon, BC V1H 2A4

Attention: Chief

- 19.2 Any notice mailed shall be deemed to have been received on the fifth (5th) business day following the date of mailing. By notice faxed or emailed will be deemed to have been received on the first (1st) business day following the date of transmission. For the purposes of this section, the term "business day" shall mean Monday to Friday, inclusive of each week, excluding days which are statutory holidays in the Province of British Columbia.
- 19.3 The Parties may change their address for delivery of any notice or other written communication in accordance with section 19.1.

20.0 SEVERANCE

- 20.1 In the event that any provision of the Agreement should be found to be invalid, the provision shall be severed and the Agreement read without reference to that provision.
- 20.2 Where any provision of the Agreement has been severed in accordance with section 20.1 and that severance materially affects the implementation of this Agreement, the parties agree to meet to resolve any issues as may arise as a result of that severance and to amend this Agreement accordingly.

21.0 AMENDMENT

- 21.1 The Agreement shall not be varied or amended except by written agreement of both Parties.
- 21.2 No waiver of the terms, conditions, warranties, covenants, and agreements set out herein shall be of any force and effect unless the same is reduced to writing and executed by all parties hereto and no waiver of any of the provisions of this Agreement will constitute a waiver of any other provision (whether or not similar) and no waiver will constitute a continuing waiver unless otherwise expressly provided.

22.0 GOVERNING LAWS

22.1 The provisions of this Agreement will be governed and interpreted in accordance with the laws of British Columbia or Canada, as applicable.

23.0 ASSIGNMENT

23.1 The rights and obligations of the Parties may not be assigned or otherwise transferred. An amalgamation by a Party does not constitute an assignment.

24.0 ENUREMENT

24.1 The Agreement enures to the benefit and is binding upon the Parties and their respective heirs, executors, administrators and successors.

IN WITNESS WHEREOF the parties hereto have executed this Agreement.

On behalf of the CITY OF KELOWNA:

On behalf of the OKANAGAN INDIAN BAND

Mayor Thomas Dyas

Chief Byron Louis

City Clerk – Stephen Fleming

Witness

SCHEDULE "A" – Band Council Resolution

SCHEDULE "B" – Memorandum – (OKIB I.R.#7) Water Demand Analysis

Prepared for	Kevin Van Vliet, Utility Services Manager
Topic:	OKIB – I.R. #7 - Water Demand Analysis
	City of Kelowna Water Supply to OKIB I.R.#7 Lands
Original Date:	December 20, 2022
Revised:	March 20, 2023 – Revision 2
Prepared by:	Rod MacLean, P. Eng., Utility Planning Manager, City of Kelowna
Reviewed by:	Jim Hager, Utility Planning Design Technician,
	Luke Dempsey, P. Eng., Utility Planning Engineer
	Robinson Puche, Utility Planning Technologist

1. BACKGROUND

In January 2022, the City of Kelowna (City), Okanagan Indian Band (OKIB) and District of Lake Country (District) signed a memorandum of understanding (MOU) to resolve several outstanding issues between the three governments that have gone unresolved for many years. The motivating factors include OKIB's desire for water and sewer for properties under its jurisdiction, a joint interest to complete the Okanagan Rail Trail through OKIB lands, ongoing joint water supply issues, wastewater effluent capacity concerns in the District, and road quality issues on Beaver Lake Road.

As part of the MOU, the City will provide the opportunity for water and wastewater servicing to all lands within I.R.#7. The City will receive a bulk water supply from the District for a fee, and in turn, the City will deliver, maintain and meter potable water supply to all customers, including OKIB lands, within the City boundary as shown in Figure A-1. As with all municipal servicing, the City's responsibilities end at the property line. For the OKIB lands, OKIB has agreed to responsibility for servicing internal individual lots or units. The City will bill bi-monthly to OKIB or its subsidiary.

As of December 2022, the City is not responsible for supplying water to the OKIB. OKIB currently operates under private water supplies or or through agreement with the District.

As part of the MOU, the District has indicated it has enough capacity to provide an average day demand of 16 litres per second of potable water to the existing developed area on OKIB lands. Should development expand beyond this capacity, it is assumed that growth will need to cover any added infrastructure costs for additional supply.

The purpose of this memo is to confirm the current design demand of all properties within I.R. #7 lands and project future water supply to an ultimate development demand scenario anticipated in 2075.

2. WATER SUPPLY ANALYSIS

a. Current Demand Design Criteria

For this analysis, it is assumed that the City provides all servicing to the property line. This assumes enough flow, pressure, and capacity for fire protection. To determine current demand, the City uses methodology from Bylaw 7900 – Subdivision, Development and Servicing Bylaw which outlines design criteria and standards of practice. To equate zoning, this analysis assumes a land use-based assessment code for each property to help address typical zoning requirements (i.e., Single family, multi-family, commercial or industrial needs). The criteria used for the other customers in the service area all use the same base criteria as shown in Table 1.

A # 0 0	Agreement or	7	Governing	Zoning or Agreement	Adjusted Current Unit Population Densities ²		
Area	Bylaw	Zoning	MDD ¹	Density (people/ha)	Current Use	People/ha	
District Metered	Bylaw 7900	Ind.	DLC	55.56	Ecotex ³	84.2	
Properties					Heavy Ind	55.56	
					Light Ind	12.5	
Shanks Road	City Ag Policy	Ag	5 USgpm/ac			No change	
			(up to 685mm)				
		MF	6oo l/cap/d	300 workers			
		Com	1800 l/cap/d	189 workers			
OKIB	Bylaw 7900	MF Com	N/A	25		No change	
New Lands	Bylaw 7900	Ind/Com	N/A		Heavy Ind	55.56	
					Light Ind	12.5	

Table 1. Design Criteria for Agreements and Adjusted Current Demands

Notes:

- 1. Unit demands (MDD) assume 1,800 L/cap/day (Bylaw 7900).
- 2. Adjusted population based on Bylaw No. 7900 and current BC Assessment Land Use,
- 3. Ecotex located at 9730 McCarthy Road.

b. Calculation of Current System Demand in OKIB Lands

Data was collected using available mapping, recent population statistics and current air photography from Spring 2022.

According to BC Assessment data for 2021, there were 1,553 residential units housing a population of 2,404 people. This calculates to over 19 units per hectare over a developable area of approximately 124 hectares. This unit development range coincides with a Residential 2 Land Use in the City of Kelowna (as per Development Cost Charge Bylaw No. 12420):

"Residential 2" – developments with a density greater than 15 and less than or equal to 35 residential dwelling units per net hectare (generally small lot single family, row housing).

This equates to two (2) people per unit. Based on the information outlined above, the current demand for the OKIB lands is estimated at 34.6 L/s, and the maximum day demand (MDD) is 69.1 L/s (See Table 2). It is assumed that each of the leased parcels will eventually be supplied water by the City.

Sub Aroa	2021 Metered ADD	Current De	mand (L/s)	Current Demand (m ³ /year)		
Sub-Alea	(lps)	ADD	MDD	ADD	MDD	
OKIB ¹	Unknown	34.6	69.1	1,089,900	2,179,700	

Table 2. Summary of Current Demand (2021) of OKIB Lands

Notes:

1. Assumes all CP holders are connected.

3. DEMAND FROM FUTURE GROWTH

To assist the City in estimating future demand in the area and properly plan for sustainable water supply, an analysis of potential future development on OKIB lands was needed to address future demand. For this analysis, it is assumed that the ultimate buildout for the entire area will occur up to the Year 2075. The estimates are conservative, and are essentially for planning purposes only to assure capacity needs are always met.

For residential properties, the highest current population density of 30 units per hectare occurs at the Holiday Park Resort. Densities in other areas are significantly lower. As such, a more realistic residential density of 25 units per hectare will be used.

For industrial and commercial developments, a hybrid density of 25.4 people per hectare is used. While greater water consuming industrial uses (55.56 people per ha) will be allowed, this "hybrid" unit population density was used consistently with other planning in the Jim Bailey industrial areas and allows for more realistic capacity expectations. Fire flows remain 225 L/s for all industrial uses.

The future capacity for the OKIB can be found in Table 3.

Table 3. Summary of Ultimate Demand Requirement

Sub Area	Ultimate De	emand (L/s)	Ultimate Demand (m ³ /year)		
Sub-Area	ADD	MDD	ADD	MDD	
ОКІВ	65.1	130.1	2,052,100	4,104,100	

4. CLOSING

The City and OKIB will work together to confirm this data, then look forward to analyzing future growth and project into new development areas using the same approach. The City believes that using a demand-based approach provides a more stable measure to determine future supply infrastructure.

ATTACHMENTS

Table A-1 - Detailed Water Demand Analysis by Property and Agreement Area

Area or Agreement Original Sub-Area No.	OKIB I.R. #7													
Property / Address	2a 485 Beaver Lake Rd	2b 715 Beaver Lake Rd	3 8495 Hwy 97N	4a 720 Commonwealth	4b 415 Commonwealth	5 Holiday Park	6a 7841 Hwy 97N	6b 9020 Jim Bailey Rd.	7 9450 Jim Bailey Rd.	9 E of Hwy 97N	8850 Jim Bailey Road Wedge (Existing City Service)	Southern Property (industrial) 8355 Jim Bailey Rd	Subtotal	OKIB Lands
Current Demands														
Year of Meter Reading Start End Water Usage (m ³) Period of Usage (days) OKIR Units 2022 (Par BCAC)		140	57	226	220	169	22	154	16	220			1 553	units
Population 2022 (Per BCAC)		292	114	438	220	508	23	322	28	427			2,404	people
ADD (L/d)		13 262,800	6 102,600	14 394,200	35 224,100	30 457,200	1 23,400	26 289,800	180 25,200	16 384,300			19.4 2,163,600	pp/na 25.0 l/s
MDD (L/d)		525,600	205,200	788,400	448,200	914,400	46,800	579,600	50,400	768,600			4,327,200	50.1 l/s
Estimated Current Design Demand based on BCAA Land Use and Bylaw 7900 Lot Area (ac) Lot Area (Ha) Irrigated or Developable Area (Ha)	34.60 15.51 15.51	24.54 11.70 11.70	24.46 9.90 9.90	40.70 16.47 16.47	15.32 6.20 6.20	38.55 15.60 15.60	65.73 26.60 26.60	14.58 5.90 5.90	0.22 0.09 0.09	36.40 14.73 14.73	3.52 1.42 1.42		298.6 124.1 124.1	
Land Use 2022 Units	I-7900	R-7900 149	R-7900 57	R-7900 236	R-7900 220	R-7900 468	R-7900 23	R-7900 154	R-7900 16	R-7900 230	C406		0	
Density by Land Use (people/ha or unit)	12.50	2	2	2	2	2	2	2	2	2	12.50			
MDD multiplier	2	2	2	2	2	2	2	2	2	2	2			
Population Equivalent ADD (L/d)	194 174,488	298 268,200	114 102,600	472 424,800	440 396,000	936 842,400	46 41,400	308 277,200	32 28,800	460 414,000	18 16,026		3,318 2,985,913	people 35 l/s
MDD (L/d) Peak hour	348,975	536,400	205,200	849,600	792,000	1,684,800	82,800	554,400	57,600	828,000	32,051		5,971,826	69 l/s 138 l/s
Annual (ML/y) BCAA Land Use (Current)	63.7	97.9	37.4	155.1	144.5	307.5	15.1	101.2	10.5	151.1	5.8		1,090	
Ultimate Design Demand as per Agreements or 7900 (worst Case)	24.62	24.54	24.46	40.70	45.22	20.55	c5 70	1150	0.00	26.40	2.52	CO 01	250 5	
Lot Area (Ac)	15.51	11.70	9.90	40.70 16.47	6.20	15.60	26.60	5.90	0.09	14.73	1.42	24.65	148.8	
Irrigated or Developable Area (Ha) Land Use	15.51 I-7900	11.70 R-7900	9.90 R-7900	16.47 R-7900	6.20 R-7900	15.60 R-7900	26.60 R-7900	5.90 R-7900	0.09 R-7900	14.73 R-7900	1.42 R-7900	0.00 I-7900	124.1	
SF Density by Land Use (units/ha) People per unit		35 2	35 2	35 2	35 2	35 2	35 2	35 2	35 2	35 2	35 2			
Unit Demand (L/cap/day)	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2		
Ind'l Density by Agmt or Zone (pp/ha)	55.56	-	-	1 152	-	1 002	1.052	-	-	1 021	100	55.56	0.465	
ADD (L/d)	862 775,500	737,100	623,700	1,153	434 390,600	982,800	1,862	413 371,700	5,609	928,025	89,743	0	8,465 7,618,232	88.2 l/s
MDD (L/d)	1,551,000 283 1	1,474,200	1,247,400 227 7	2,075,309 378 7	781,200	1,965,600 358 7	3,351,600 611 7	743,400	11,218	1,856,050	179,486 32.8	0	15,236,463 781	176.3 l/s
	205.1	205.0	227.7	578.7	142.0	338.7	011.7	135.7	2.0	558.7	52.8	0.0	2,781	
Hybrid Ultimate Design Demand Lot Area (ac)	34.60	24.54	24.46	40.70	15.32	38.55	65.73	14.58	0.22	36.40	3.52	60.91	359.5	
Lot Area (Ha) Developable Area (Ha)	15.51 12.41	11.70 11.70	9.90 9.90	16.47 16.47	6.20 6.20	15.60 15.60	26.60 26.60	5.90 5.90	0.09	14.73 14.73	1.42 1.42	24.65 19.72	148.8 140.7	
Future Zoning	300	R-7900	R-7900	R-7900	R-7900	R-7900	R-7900	R-7900	R-7900	R-7900	R-7900	300	1.007	
SF Density by Land Use (units/ha) People per unit		25	25	25	25	25	25	25	25	25	25			
Unit Demand (L/cap/day) MDD multiplier	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2	900 2		
Ind'I Density by Land Use (pp/ha)	25.42	5.85	495	874	310	780	1 330	295	4	737	71	25.42	6.247	
ADD (L/d)	283,500	526,500	445,500	741,182	279,000	702,000	1,197,000	265,500	4,006	662,875	64,102	450,900	5,622,065	65.1 l/s
MDD (L/d)	567,000 103 5	1,053,000 192 2	891,000 162 6	1,482,364 270 5	558,000 101 8	1,404,000 256 2	2,394,000 436 9	531,000 96 9	8,013 1 5	1,325,750 241 9	128,204 23.4	901,800 164 6	11,244,131	130.1 l/s
, (initiation (inite) y)	100.0	132.2	102.0	270.5	101.0	230.2	+30.5	50.5	1.5	271.5	23.7	104.0	2,032	

SCHEDULE "C" - Beaver Lake Service Area/Alignment of Water Transmission Main

Water and Sewer Agreements

with Okanagan Indian Band

April 24, 2023

Outline

- Legal Agreements overview
 OKIB Water & Sewer Agreements
 Rail Trail Access Agreement
- Questions

Legal Agreements from MOU

-	Ref #	Description	Stage
	1	Bulk Water. Kelowna & DLC	Approved, awaiting signature
	2&3	Water and Sewer. Kelowna & OKIB	Subject of this report
	4a	Sewer Permit. Kelowna, OKIB & Canada	Complete
	4b	Rail Trail Permit. Kelowna & OKIB	Subject of this report
	4C	Commonwealth Road Permit. Kelowna & OKIB	Development commencing Q2 2023
	5	Wastewater Service. Kelowna & DLC	Approved, awaiting signature
		Future Agreements	
	6	Beaver Lake Road. Kelowna, OKIB & DLC	Planned to commence in 2024
	7	Municipal Boundary Adjustment. Kelowna & DLC	Preliminary discussion stage

Water Agreement

Service Area

- OKIB Indian Reservation #7
- Adds properties within Kelowna that are mostly on well service
- Formal servicing agreement for properties who choose to connect
- Ensures properties have access to water quality consistent with Canadian standards
- Ensure properties have fire flow supply
- Replaces previous individual agreements
- Plans for new development

Service Area

- OKIB Indian Reservation #7
- Adds properties within Kelowna that are mostly on septic service
- Formal servicing agreement between the parties who choose to connect
- Improves ground water quality
- Plans for new development

Takes effect after Canada transfers the former rail ROW to OKIB
Provides public use of OKIB lands for current Rail Trail uses
Sets conditions of maintenance
Combines with utility use of lands as well

Rail Trail Next Steps

- Land transfer from Govt. of Canada to OKIB
- Rail Trail agreement signed
- Construction commences

Thank you

Questions?

CITY OF KELOWNA

BYLAW NO. 12501

Amendment No. 1 to the Five Year Financial Plan 2022-2026 Bylaw No. 12338

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts as follows:

- 1. THAT the Five Year Financial Plan 2022-2026 Bylaw No. 12338 be amended by deleting Schedule "A" in its entirety and replacing with them new Schedule "A" as attached to and forming part of this bylaw;
- 2. This bylaw may be cited for all purposes as Bylaw No. 12501 being "Amendment No. 1 to the Five Year Financial Plan Bylaw, 2022-2026, No. 12338."

Read a first, second and third time by the Municipal Council this 17th day of April, 2023.

Adopted by the Municipal Council of the City of Kelowna this

Mayor

City Clerk

Schedule "A" Financial Plan 2022 - 2026

	2022 Amended						
	Budget	2022	2023	2024	2025	2026	2027-2030
Pavanua							
Property Value Tax	167 107 316	167 107 316	179 522 375	191 801 552	204 813 609	215 669 897	940 159 269
Library Requisition	7 044 000	7 044 023	7 18/ 903	7 328 602	7 475 174	7 624 677	32 054 448
Parcel Taxos	6 068 288	2 420 074	2 0/1 626	2 065 028	2 204 202	2 156 211	12 662 470
Face and Charges	140 420 006	150 005 525	3,341,030 212 077 197	275 010 172	220 006 280	3,430,041 246 465 222	1 062 681 066
Perrowing Proceeds	7 117 011	7 159 600	213,577,187	223,910,172	10 560 000	240,403,323	2,003,081,000
Other Sources	102 622 660	7,158,000	-	20,053,200		-	3,830,000
Other Sources	102,032,009	/1,109,881	10,729,575	59,588,315	521 612 401	522 265 244	270,738,529
	440,300,190	411,900,529	475,555,074	514,040,679	521,012,401	555,505,544	2,329,123,782
Transfer between Funds							
Reserve Funds	2,514,347	2,319,917	1,018,987	1,018,987	1,018,987	1,018,987	4,075,949
DCC Funds	39,553,199	37,425,860	28,264,914	34,031,463	36,559,002	35,863,936	165,616,918
Surplus/Reserve Accounts	240,632,423	206,914,336	78,307,796	52,726,789	65,029,541	56,828,498	207,146,830
	282,699,969	246,660,113	107,591,697	87,777,239	102,607,530	93,711,421	376,839,697
Total Revenue	723,000,159	658,566,442	582,947,371	602,424,118	624,219,931	627,076,765	2,705,965,479
Expenditures							
Municipal Debt							
Debt Interest	3 702 099	3 694 690	4 162 325	6 044 860	8 532 854	10 050 872	39 490 366
Debt Principal	9,593,546	8,847,932	7.654.270	7.885.874	10.911.346	13,248,530	48.035.228
Capital Expenditures	330.494.687	273.558.700	155.020.452	154.084.439	148.709.078	133.443.167	576.459.501
Other Municipal Purposes	, ,,		,,	,	, ,	,,	
General Government	37,103,554	35,548,877	39,501,887	40,473,724	41,466,844	42,621,132	182,734,891
Planning, Development							
& Building Services	34,256,816	33,173,416	26,023,038	26,596,068	27,400,651	27,371,013	119,155,373
Community Services	98,904,869	99,961,295	103,041,317	106,205,449	109,481,906	112,688,935	485,206,409
Protective Services	94,740,432	90,581,801	84,395,912	89,607,971	94,403,331	98,854,158	430,467,334
Utilities	27,123,959	25,659,161	23,515,668	24,184,209	25,281,998	25,981,311	111,405,897
Airport	19,974,967	19,974,967	30,114,952	31,423,042	32,757,421	35,275,058	150,430,052
	655,894,929	591,000,839	473,429,821	486,505,636	498,945,430	499,534,177	2,143,385,050
I ransfers between Funds	20.000 454		20 205 675	20 127 000	20 402 000	24 450 027	424 200 000
Reserve Funds	28,860,451	28,603,562	30,285,675	30,427,080	30,193,089	31,158,937	124,289,996
DUC FUNDS Surplus/Reserve Accounts	- 28 211 770	- 38 962 0/1	- 79 231 875	- 85 /191 /102	- 95 081 /12	- 96 383 651	-
	67 105 220	67 565 602	109 517 550	115 918 //87	125 27/ 501	127 5/12 582	562 580 120
	07,103,230	07,303,003	103,317,330	113,310,402	123,274,301	121,042,000	502,500,425
Total Expenditures	723,000,159	658,566,442	582,947,371	602,424,118	624,219,931	627,076,765	2,705,965,479

CITY OF KELOWNA

BYLAW NO. 12513

Amendment No. 11 to Miscellaneous Fees and Charges Bylaw No. 9381

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts that the City of Kelowna Miscellaneous Fees and Charges Bylaw No. 9381 be amended as follows:

- 1. THAT Miscellaneous Fees and Charges Bylaw No. 9381 be amended by adding the following to Schedule "A" in its appropriate location:
 - " 17. Non-Refundable Credit Card Processing Fee for Property Tax Payments
- 2.3% of transaction amount".
- 2. This bylaw may be cited for all purposes as "Bylaw No. 12513, being Amendment No. 11 to Miscellaneous Fees and Charges Bylaw No. 9381."
- 3. This bylaw shall come into full force and effect and is binding on all persons as and from the date of adoption.

Read a first, second and third time by the Municipal Council this 17th day of April, 2023.

Adopted by the Municipal Council of the City of Kelowna this

Mayor

City Clerk

CITY OF KELOWNA

BYLAW NO. 12512 Amendment No. 23 to Subdivision, Development and Servicing Bylaw No. 7900

The Municipal Council of the City of Kelowna, in open meeting assembled, enacts that the City of Kelowna Subdivision, Development and Servicing Bylaw No. 7900 be amended as follows:

- 1. THAT **SCHEDULE 4 GENERAL** be amended by deleting "Policy 266 (Approved Products List) and replace it with "Approved Products List";
- 2. AND THAT **SCHEDULE 4 GENERAL** be amended by adding the following after "Policy 266 (Approved Products List)":

"Delegation of Authority for Approved Products List

Provided that all necessary prerequisites of the *Community Charter* the *Local Government Act*, other applicable federal and provincial enactments, City bylaws, and City policies have been met, the General Manager, Infrastructure is assigned the authority to approve and amend the Approved Products List on behalf of the City";

- 3. AND THAT SCHEDULE 4 Section o.o General Design Considerations, o.1 General be amended by deleting "Policy 266 (Approved Products List)";
- 4. AND THAT SCHEDULE 4, Section 5 Roadway Lighting, 5.2 Codes, Rules Standards and Permits, 5.2.2 be amended by deleting "266";
- 5. AND THAT SCHEDULE 4, Section 7 Landscape and Irrigation, 7C.1 (x) General Irrigation Requirements be amended by deleting "Policy 266";
- 6. AND FURTHER THAT Schedule 5, CONSTRUCTION STANDARDS, Section 1. CONSTRUCTION SPECIFICATIONS, 2.1 General, 2.1.2 be amended by deleting "See Council Policy 266" and replace it with "See Approved Products List".
- 7. This bylaw may be cited for all purposes as "Bylaw No. 12512, being Amendment No. 23 to Subdivision, Development and Servicing Bylaw No. 7900."
- 8. This bylaw shall come into full force and effect and is binding on all persons as and from the date of adoption.

Read a first, second and third time by the Municipal Council this 17th day of April, 2023.

Adopted by the Municipal Council of the City of Kelowna this

Mayor

City Clerk